Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Psychol ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548474

RESUMEN

We review Bandura's contributions to cognitive-behavioural theory, research and practice. His basic research on the causal role of cognitive processes in social learning was a major factor in the emergence of cognitive-behavioural therapies in the 1970s. His investigations on observational learning and self-efficacy beliefs led to the development of guided mastery therapy, a specific cognitive-behavioural intervention for anxiety disorders. His research on self-regulatory processes provided an empirical basis for the emergence of numerous therapies targeting self-regulation. We conclude by discussing how Bandura's social cognitive theory, as well as more recent advances in social cognitive theorising, might be further applied to innovative approaches to therapeutic interventions, assessment and clinical case conceptualization.

2.
Scand J Med Sci Sports ; 34(1): e14334, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36973869

RESUMEN

Acute exercise and chronic exercise training elicit beneficial whole-body changes in physiology that ultimately depend on profound alterations to the dynamics of tissue-specific proteins. Since the work accomplished during exercise owes predominantly to skeletal muscle, it has received the majority of interest from exercise scientists that attempt to unravel adaptive mechanisms accounting for salutary metabolic effects and performance improvements that arise from training. Contemporary scientists are also beginning to use mass spectrometry-based proteomics, which is emerging as a powerful approach to interrogate the muscle protein signature in a more comprehensive manner. Collectively, these technologies facilitate the analysis of skeletal muscle protein dynamics from several viewpoints, including changes to intracellular proteins (expression proteomics), secreted proteins (secretomics), post-translational modifications as well as fiber-, cell-, and organelle-specific changes. This review aims to highlight recent literature that has leveraged new workflows and advances in mass spectrometry-based proteomics to further our understanding of training-related changes in skeletal muscle. We call attention to untapped areas in skeletal muscle proteomics research relating to exercise training and metabolism, as well as basic points of contention when applying mass spectrometry-based analyses, particularly in the study of human biology. We further encourage researchers to couple the hypothesis-generating and descriptive nature of omics data with functional analyses that propel our understanding of the complex adaptive responses in skeletal muscle that occur with acute and chronic exercise.


Asunto(s)
Ejercicio Físico , Proteómica , Humanos , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Proteínas Musculares/metabolismo , Espectrometría de Masas
3.
Cell Rep Med ; 5(1): 101348, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38151020

RESUMEN

The discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise. In cultured human adipocytes, oncostatin-M enhances MAPK signaling and regulates lipolysis. Oncostatin-M expression arises predominantly from adipose tissue immune cell fractions, while the corresponding receptors are expressed in adipocytes. Oncostatin-M expression increases in cultured human Thp1 macrophages following exercise-like stimuli. Our results suggest that immune cells, via secreted factors such as oncostatin-M, mediate a crosstalk between skeletal muscle and adipose tissue during exercise to regulate adipocyte metabolism and adaptation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Femenino , Humanos , Masculino , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Lipólisis
4.
Metabol Open ; 14: 100182, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35340718

RESUMEN

Background: Recent findings indicate that ghrelin, particularly the unacylated form (UnAG), acutely stimulates skeletal muscle fatty acid oxidation (FAO) and can preserve insulin signaling and insulin-stimulated glucose uptake in the presence of high concentrations of saturated fatty acids. However, we recently reported that the stimulatory effect of ghrelin on FAO and subsequent ability to protect insulin stimulated glucose uptake was lost following 6-weeks (6w) of chronic high fat feeding. In the current study we examined the effects of both short-term 5 day (5d) and chronic 6w high-fat diet (HFD) on muscle ghrelin response, and whether exercise training could prevent the development of muscle ghrelin resistance with 6w of HFD. Methods and Results: Soleus muscle strips were isolated from male rats to determine the direct effects of acylated (AG) and UnAG isoforms on FAO and glucose uptake. A 5d HFD did not alter the response of soleus muscle to AG or UnAG. Conversely, 6w of HFD was associated with a loss of ghrelin's ability to stimulate FAO and protect insulin stimulated glucose uptake. Muscle response to UnAG remained intact following the 6w HFD with chronic exercise training. Unexpectedly, muscle response to both AG and UnAG was also lost after 6w of low-fat diet (LFD) consumption. Protein content of the classic ghrelin receptor, GHS-R1a, was not affected by diet or training. Corticotropin-releasing hormone receptor-2 (CRF-2R) content, a putative receptor for ghrelin in muscle, was significantly decreased in soleus from 6w HFD-fed animals and increased following exercise training. This may explain the protection of UnAG response with training in HFD-fed rats but does not explain why ghrelin response was also lost in LFD-fed animals. Conclusions: UnAG protects muscle glucose uptake during acute lipid oversupply, likely due to its ability to stimulate FAO. This effect is lost in 6w HFD-fed animals but protected with exercise training. Unexpectedly, ghrelin response was lost in 6w LFD-fed animals. The loss of ghrelin response in muscle with a LFD cannot be explained by a change in putative ghrelin receptor content. We believe that the sedentary nature of the animals is a major factor in the development of muscle ghrelin resistance and warrants further research.

5.
Emotion ; 22(5): 954-970, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32852963

RESUMEN

Affective science offers many self-report measures, but implicit measures of multiple distinct emotional states are lacking. Prior research (Bartoszek & Cervone, 2017) initiated the development of such an assessment method by examining whether ratings of the emotional content of abstract images reveal raters' emotional states. The current studies were designed to determine whether the speed of these ratings is key to the validity of an implicit emotion measure. To this end, Study 1 exploited naturally occurring variations in response times, whereas Study 2 used time pressure in responding to the implicit measure. Both studies featured a fear-induction and revealed that implicitly assessed fear correlated with psychophysiological (Study 1) and behavioral (Studies 1 and 2) responses even when controlling for self-reported fear. Importantly, results supported the construct, criterion, and incremental validity of the implicit measure only among participants who responded quickly. Study 3 employed a sadness-induction and an experimental manipulation of response times using fast- and slow-paced conditions. The emotion induction affected fast, but not slow, responses to the implicit measure. Overall, findings highlight the importance of response speed in implicit emotion assessment and suggest that the Implicit Measure of Distinct Emotional States can validly differentiate among emotions. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Asunto(s)
Emociones , Tristeza , Emociones/fisiología , Miedo , Humanos , Tiempo de Reacción
6.
Pers Soc Psychol Bull ; 48(7): 1039-1053, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34269119

RESUMEN

Three studies explore the possibility that attitudes toward "diversity" are multidimensional rather than unidimensional and that ideological differences in diversity attitudes vary as a function of diversity subtype. Study 1 (n = 1,001) revealed that the factor structure of attitudes toward 23 diverse community features was bidimensional. Factors involving demographic and viewpoint diversity emerged. Conservatives reported more positive attitudes toward viewpoint diversity, and liberals more positive attitudes toward demographic diversity. Study 2 (n = 1,012) replicated Study 1 findings, and extended Study 1 results by showing attitudes toward the general concept of diversity predicted attitudes toward demographic diversity but not viewpoint diversity. In Study 3, 386 participants rated how relevant a set of features was to their prototypical understanding of diversity. A confirmatory factor analysis (CFA) revealed people discriminate between viewpoint, demographic, and consumer diversity. Conservatives perceived viewpoint features as more relevant to "diversity," whereas liberals perceived demographic features as more relevant.


Asunto(s)
Actitud , Política , Humanos
7.
Mach Learn ; 110(6): 1389-1427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759466

RESUMEN

The expected possession value (EPV) of a soccer possession represents the likelihood of a team scoring or conceding the next goal at any time instance. In this work, we develop a comprehensive analysis framework for the EPV, providing soccer practitioners with the ability to evaluate the impact of observed and potential actions, both visually and analytically. The EPV expression is decomposed into a series of subcomponents that model the influence of passes, ball drives and shot actions on the expected outcome of a possession. We show we can learn from spatiotemporal tracking data and obtain calibrated models for all the components of the EPV. For the components related with passes, we produce visually-interpretable probability surfaces from a series of deep neural network architectures built on top of flexible representations of game states. Additionally, we present a series of novel practical applications providing coaches with an enriched interpretation of specific game situations. This is, to our knowledge, the first EPV approach in soccer that uses this decomposition and incorporates the dynamics of the 22 players and the ball through tracking data.

8.
Proteomes ; 9(3)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34449730

RESUMEN

Skeletal muscle is a major contributor to whole-body glucose homeostasis and is an important endocrine organ. To date, few studies have undertaken the large-scale identification of skeletal muscle-derived secreted proteins (myokines), particularly in response to stimuli that activate pathways governing energy metabolism in health and disease. Whereas the AMP-activated protein kinase (AMPK) and insulin-signaling pathways have received notable attention for their ability to independently regulate skeletal muscle substrate metabolism, little work has examined their ability to re-pattern the secretome. The present study coupled the use of high-resolution MS-based proteomics and bioinformatics analysis of conditioned media derived from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR-an AMPK activator)- and insulin-treated differentiated C2C12 myotubes. We quantified 858 secreted proteins, including cytokines and growth factors such as fibroblast growth factor-21 (Fgf21). We identified 377 and 118 proteins that were significantly altered by insulin and AICAR treatment, respectively. Notably, the family of insulin growth factor binding-proteins (Igfbp) was differentially regulated by each treatment. Insulin- but not AICAR-induced conditioned media increased the mitochondrial respiratory capacity of myotubes, potentially via secreted factors. These findings may serve as an important resource to elucidate secondary metabolic effects of insulin and AICAR stimulation in skeletal muscle.

9.
Adipocyte ; 10(1): 338-349, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34224298

RESUMEN

Ghrelin is released from the stomach as an anticipatory signal prior to a meal and decreases immediately after. Previous research has shown that both acylated (AG) and unacylated (UnAG) ghrelin blunt adrenoreceptor-stimulated lipolysis in rat white adipose tissue (WAT) ex vivo. We investigated whether acute or chronic consumption of a high fat diet (HFD) impaired the ability of ghrelin to regulate adipose tissue lipolysis, and if this impairment could be restored with exercise. After 5 days (5d) of a HFD, or 6 weeks (6 w) of a HFD (60% kcal from fat) with or without exercise training, inguinal and retroperitoneal WAT was collected from anesthetized rats for adipose tissue organ culture. Samples were treated with 1 µM CL 316,243 (CL; lipolytic control), 1 µM CL+150 ng/ml AG or 1 µM CL+150 ng/ml UnAG. Incubation media and tissue were collected after 2 hours. Colorometric assays were used to determine glycerol and free fatty acid (FFA) concentrations in media. Western blots were used to quantify the protein content of lipolytic enzymes and ghrelin receptors in both depots. CL stimulated lipolysis was evidenced by increases in glycerol (p < 0.0001) and FFA (p < 0.0001) concentrations in media compared to control. AG decreased CL-stimulated glycerol release in inguinal WAT from 5d LFD rats (p = 0.0097). Neither AG nor UnAG blunted lipolysis in adipose tissue from 5d or 6 w HFD-fed rats, and exercise did not restore ghrelin's anti-lipolytic ability in 6 w HFD-fed rats. Overall, this study demonstrates that HFD consumption impairs ghrelin's ability to regulate adipose tissue lipolysis.


Asunto(s)
Dieta Alta en Grasa , Lipólisis , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Ghrelina/metabolismo , Obesidad/metabolismo , Ratas
10.
J Biomech ; 122: 110448, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33905969

RESUMEN

High-intensity eccentric exercise can lead to muscle damage and weakness. The 'repeated bout effect' (RBE) can attenuate these impairments when performing a subsequent bout. The influence of eccentric exercise-induced muscle damage on low-frequency force production is well-characterized; however, it is unclear how eccentric exercise and the RBE affect torque production across a range of stimulation frequencies (i.e., the torque-frequency relationship). We investigated the influence of an initial (Bout 1) and repeated bout (Bout 2) of eccentric exercise on the elbow flexor torque-frequency relationship. Eleven males completed two bouts of high-intensity eccentric elbow flexions, 4 weeks apart. Torque-frequency relationships were constructed at baseline and 0.5, 24, 48, 72, 96, and 168 h following both bouts via percutaneous stimulation at 1, 6, 10, 20, 30, 40, 50, and 100 Hz. Serum creatine kinase activity, self-reported muscle soreness, and isometric maximum voluntary contraction torque indirectly inferred the presence of muscle damage following Bout 1, and attenuation of muscle damage following Bout 2. Torque amplitude at all stimulation frequencies was impaired 30 min following eccentric exercise, however, torque at lower (1-10 Hz) and higher frequencies (40-100 Hz) recovered within 24 h while torque across the middle frequency range (20-30 Hz) recovered by 48 h. No between-bout differences were detected in absolute or normalized torque at any stimulation frequency, indicating no protective RBE on the elbow flexor torque-frequency relationship.


Asunto(s)
Contracción Isométrica , Músculo Esquelético , Ejercicio Físico , Humanos , Masculino , Contracción Muscular , Mialgia , Torque
11.
Appl Physiol Nutr Metab ; 46(5): 461-472, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33125854

RESUMEN

High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output. We investigated the influence of the RBE on power production and estimated fatigue- and damage-induced neuromuscular impairments following repeated high-intensity eccentric contractions. Twelve healthy adult males performed 5 sets of 30 maximal eccentric elbow flexions and repeated an identical bout 4 weeks later. Recovery was tracked over 7 days following both bouts. Reduced maximum voluntary isometric contraction torque, and increased serum creatine kinase and self-reported soreness indirectly inferred muscle damage. Peak isotonic power, time-dependent measures - rate of velocity development (RVD) and rate of torque development (RTD) - and several electrophysiological indices of neuromuscular function were assessed. The RBE protected peak power, with a protective index of 66% 24 h after the second eccentric exercise bout. The protection of power also related to preserved RVD (R2 = 0.61, P < 0.01) and RTD (R2 = 0.39, P < 0.01). Furthermore, the RBE's protection against muscle damage permitted the estimation of fatigue-associated neuromuscular performance decrements following eccentric exercise. Novelty: The repeated bout effect protects peak isotonic power. Protection of peak power relates to preserved rates of torque and velocity development, but more so rate of velocity development. The repeated bout effect has little influence on indices of neuromuscular fatigue.


Asunto(s)
Adaptación Fisiológica , Contracción Muscular , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Mialgia/fisiopatología , Adulto , Creatina Quinasa/sangre , Codo/fisiología , Humanos , Contracción Isométrica , Masculino , Músculo Esquelético/enzimología , Mialgia/enzimología , Autoinforme , Torque , Adulto Joven
12.
Metabol Open ; 5: 100026, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32812929

RESUMEN

BACKGROUND: Ghrelin is a gut hormone that spikes in circulation before mealtime. Recent findings suggest that both ghrelin isoforms stimulate skeletal muscle fatty acid oxidation, lending to the possibility that it may regulate skeletal muscle's handling of meal-derived substrates. It was hypothesized in the current study that ghrelin may preserve muscle insulin response during conditions of elevated saturated fatty acid (palmitate) availability by promoting its oxidation. METHODS AND RESULTS: Soleus muscle strips were isolated from male rats to determine the direct effects of ghrelin isoforms on fatty acid oxidation, glucose uptake and insulin signaling. We demonstrate that unacylated ghrelin (UnAG) is the more potent stimulator of skeletal muscle fatty acid oxidation. Both isoforms of ghrelin generally protected muscle from impaired insulin-mediated phosphorylation of AKT Ser473 and Thr308, as well as downstream phosphorylation of AS160 Ser588 during high palmitate exposure. However, only UnAG was able to preserve insulin-stimulated glucose uptake during exposure to high palmitate concentrations. The use of etomoxir, an irreversible inhibitor of carnitine palmitoyltransferase (CPT-1) abolished this protection, strongly suggesting that UnAG's stimulation of fatty acid oxidation may be essential to this protection. To our knowledge, we are also the first to investigate the impact of a chronic high-fat diet on ghrelin's actions in muscle. Following 6 wks of a high-fat diet, UnAG was unable to preserve insulin-stimulated signaling or glucose transport during an acute high palmitate exposure. UnAG was also unable to further stimulate 5' AMP-activated protein kinase (AMPK) or fatty acid oxidation during high palmitate exposure. Corticotropin-releasing hormone receptor-2 (CRF-2R) content was significantly decreased in muscle from high-fat fed animals, which may partially account for the loss of UnAG's effects. CONCLUSIONS: UnAG is able to protect muscle from acute lipid exposure, likely due to its ability to stimulation fatty acid oxidation. This effect is lost in high-fat fed animals, implying a resistance to ghrelin at the level of the muscle. The underlying mechanisms accounting for ghrelin resistance in high fat-fed animals remain to be discovered.

13.
Curr Opin Pharmacol ; 52: 25-32, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32480033

RESUMEN

Ghrelin is a stomach-derived hormone and a potent appetite stimulant. Ghrelin has recently harbored interest as a potential regulator of carbohydrate and lipid metabolism in skeletal muscle and adipose tissue; however, in vivo ghrelin administration is confounded by secondary effects. The assessment of the direct metabolic effects of acylated (AG) and unacylated (UnAG) ghrelin is a relatively new area of research. In isolated adipocytes and muscle, ghrelin has demonstrated antilipolytic effects. In muscle, ghrelin has been shown to acutely stimulate fat oxidation, which may protect the muscle from the insulin-desensitizing effects of high fatty acid concentrations. The effects of ghrelin directly on muscle glucose uptake are controversial. Whether ghrelin can be utilized therapeutically for conditions such as type 2 diabetes will depend on our better understanding of ghrelin's independent effects on muscle and adipose tissue metabolism, and whether this can predict ghrelin's effects when administered in vivo.


Asunto(s)
Tejido Adiposo/metabolismo , Mucosa Gástrica/metabolismo , Ghrelina/metabolismo , Metabolismo de los Lípidos/fisiología , Músculo Esquelético/metabolismo , Animales , Humanos , Lipólisis/fisiología , Estómago
14.
Physiol Rep ; 8(9): e14408, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32342642

RESUMEN

Omega-3 polyunsaturated fatty acids (PUFAs) have unique properties purported to influence several aspects of metabolism, including energy expenditure and protein function. Supplementing with n-3 PUFAs may increase whole-body resting metabolic rate (RMR), by enhancing Na+ /K+ ATPase (NKA) activity and reducing the efficiency of sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) activity by inducing a Ca2+ leak-pump cycle. The purpose of this study was to examine the effects of fish oil (FO) on RMR, substrate oxidation, and skeletal muscle SERCA and NKA pump function in healthy older individuals. Subjects (n = 16 females; n = 8 males; 65 ± 1 years) were randomly assigned into groups supplemented with either olive oil (OO) (5 g/day) or FO (5 g/day) containing 2 g/day eicosapentaenoic acid and 1 g/day docosahexaenoic acid for 12 weeks. Participants visited the laboratory for RMR and substrate oxidation measurements after an overnight fast at weeks 0 and 12. Skeletal muscle biopsies were taken during weeks 0 and 12 for analysis of NKA and SERCA function and protein content. There was a main effect of time with decrease in RMR (5%) and fat oxidation (18%) in both the supplementation groups. The kinetic parameters of SERCA and NKA maximal activity, as well as the expression of SR and NKA proteins, were not affected after OO and FO supplementation. In conclusion, these results suggest that FO supplementation is not effective in altering RMR, substrate oxidation, and skeletal muscle SERCA and NKA protein levels and activities, in healthy older men and women.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Aceites de Pescado/administración & dosificación , Músculo Esquelético/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Edad , Anciano , Metabolismo Basal , Metabolismo Energético , Femenino , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Aceite de Oliva/administración & dosificación , Oxidación-Reducción
15.
Front Psychol ; 11: 559114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510663

RESUMEN

This study aimed to capture how the coronavirus disease 2019 (COVID-19) crisis disrupted and affected individuals' goal pursuits and self-efficacy beliefs early during the lockdown phase of COVID-19. Participants impacted by lockdown regulations accessed an online questionnaire during a 10-day window from the end of March to early April 2020 and reported a significant personal goal toward which they had been working, and then completed quantitative and qualitative survey items tapping self-efficacy beliefs for goal achievement, subjective caring about the goal during disrupted world events, and current pursuit or abandonment of the goal. The findings from both quantitative and qualitative measures demonstrated a significant drop in self-efficacy beliefs from before to during the pandemic with a large effect based on whether people thought they could still achieve their goal under current conditions. Over two-thirds of the sample was unsure or did not believe they could still carry out their goal, and over a quarter either abandoned or were uncertain they could pursue the goal. Despite this, people continued to care about their goals. Reasons for abandonment and strategies for coping with goals within the lockdown and beyond are discussed.

18.
Physiol Rep ; 7(7): e14028, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30963694

RESUMEN

Ghrelin is classically known as a central appetite-stimulating hormone but has recently been recognized to have a significant role in peripheral tissue energy metabolism. However, the direct effects of ghrelin on skeletal muscle, a major site for glucose and lipid disposal, remain understudied. We found that the two major ghrelin isoforms, acylated and unacylated ghrelin, were able to significantly increase skeletal muscle fatty acid oxidation (~20%) while incorporation of fatty acids into major lipid pools remained unchanged. The increase in fatty acid oxidation was accompanied by increases in acetyl-CoA carboxylase phosphorylation, a downstream target of AMPK. Ghrelin isoforms had no independent effect on lipolysis under unstimulated conditions, but nearly completely abolished epinephrine-stimulated lipolysis. This effect was generally, but not consistently related to a blunting in the phosphorylation of HSL activation sites, Ser660 and 563. Taken together, these findings suggest that ghrelin isoforms have a direct, acute effect on fatty acid oxidation and lipolysis.


Asunto(s)
Ácidos Grasos/metabolismo , Ghrelina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipólisis/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Acetil-CoA Carboxilasa/metabolismo , Animales , Epinefrina/farmacología , Masculino , Músculo Esquelético/metabolismo , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
19.
Front Psychol ; 10: 276, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809182

RESUMEN

This study tested the hypothesis that older adults retain high levels of everyday problem solving performance when confronting problems of maximal ecological relevance, identified through idiographic methods. Younger, middle-aged, and older adults completed a daily challenge questionnaire (DCQ) in which they reported problems of maximal personal relevance or idiographic problems. The large majority of the problems reported were interpersonal. We then assessed performance on an everyday problem-solving task in which participants generated solutions for idiographic problems as well as problems generated by group matched research participants representing each of two other age groups (e.g., older adults received their own problems plus problems generated by matched younger and middle-aged adults). Performance was measured by computing the total number of safe and effective solutions provided. Results fully supported our hypothesis; adults of all ages showed higher performance when solving their idiographic problems.

20.
Physiol Rep ; 7(2): e13982, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653856

RESUMEN

This study investigated the effects of acute and chronic beetroot juice (BRJ) supplementation on submaximal exercise oxygen uptake (VO2 ), time trial (TT) performance, and contractile properties of the plantar flexors in females. Study 1: Using a double blind, randomized, crossover design, 12 recreationally active females using hormonal contraceptives supplemented acutely (2.5 h) and chronically (8 days) with 280 mL BRJ/d (~26 mmoles nitrate [ NO3- ]) or a NO3- -free placebo (PLA). On days 1 and 8, participants cycled for 10 min at 50% and 70% VO2peak and completed a 4 kJ/kg body mass TT. Plasma [ NO3- ] and nitrite ([NO2- ]) increased significantly following BRJ supplementation versus PLA. There was no effect of BRJ supplementation on VO2 at 50% or 70% VO2peak , or TT performance. Study 2: 12 recreationally active females (n = 7 from Study 1) using hormonal contraceptives participated in a baseline visit and were supplemented acutely (2.5 h) and chronically (8 days) with 280 mL BRJ/d. Maximum voluntary strength (MVC) of the plantar flexors was assessed and a torque-frequency curve performed. BRJ had no effect on MVC, voluntary activation, peak twitch torque, time to peak torque, or half relaxation time. Following both acute (46.6 ± 4.9% of 100 Hz torque) and chronic (47.2 ± 4.4%) supplementation, 10 Hz torque was significantly greater compared to baseline (32.9 ± 2.6%). In summary, BRJ may not be an effective ergogenic aid in recreationally active females as it did not reduce submaximal exercise VO2 or improve aerobic TT performance despite increasing low frequency torque production.


Asunto(s)
Antioxidantes/farmacología , Rendimiento Atlético/fisiología , Beta vulgaris/química , Ejercicio Físico/fisiología , Jugos de Frutas y Vegetales , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Adulto , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA