Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 45(7): 1189-1200, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35713785

RESUMEN

This work investigates the possibility of using scales of sea bass Dicentrarchus labrax as a low-cost material for the adsorptive removal of methylene blue (MB) cationic dye in aqueous solutions. The physical-chemical characterizations of fish scales in natura (FS-in natura) revealed through thermogravimetry that they are composed of inorganic (hydroxyapatite) and organic (collagen) phases in relatively similar amounts. Spectroscopy analyses show that the interactions of MB with FS-in natura occur mainly in the organic phase layer of the adsorbent. The effects of initial MB concentration (5.0 × 10-4 and 5.0 × 10-3 mol L-1) and temperature (25-55 °C) on the adsorption efficiency of FS-in natura were evaluated. FS-in natura at MB concentration (5.0 × 10-3 and 5.0 × 10-4 mol L-1) exhibited the maximum adsorption capacities of 2.2 × 10-3 mol g-1 at 25 °C and 2.8 × 10-5 mol g-1 at 55 °C, respectively. The pseudo-second-order model represented the adsorption kinetics well, and the equilibrium isotherm data were better correlated using the Langmuir equation. The newly developed neural model demonstrated a high predictive capacity with an R-value greater than 0.99 and reduced values for mean squared error, root mean squared error, and mean absolute error equal to 0.003, 0.055, and 0.0348, respectively. The genetic algorithm was used to optimize the experimental conditions of the process. In conclusion, the sea bass scales have promising prospects as a low-cost alternative material for removing cationic dyes from aqueous solutions.


Asunto(s)
Lubina , Contaminantes Químicos del Agua , Adsorción , Animales , Biodegradación Ambiental , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Termodinámica , Agua , Contaminantes Químicos del Agua/química
2.
J Colloid Interface Sci ; 298(2): 515-22, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16497318

RESUMEN

Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...