Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Earth Space Sci ; 8(11): e2021EA001637, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34820479

RESUMEN

Visible-shortwave infrared (VSWIR) imaging spectrometers map composition remotely with spatial context, typically at many meters-scale from orbital and airborne data. Here, we evaluate VSWIR imaging spectroscopy capabilities at centimeters to sub-millimeter scale at the Samail Ophiolite, Oman, where mafic and ultramafic lithologies and their alteration products, including serpentine and carbonates, are exposed in a semi-arid environment, analogous to similar mineral associations observed from Mars orbit that will be explored by the Mars-2020 rover. At outcrop and hand specimen scales, VSWIR spectroscopy (a) identifies cross-cutting veins of calcite, dolomite, magnesite, serpentine, and chlorite that record pathways and time-order of multiple alteration events of changing fluid composition; (b) detects small-scale, partially altered remnant pyroxenes and localized epidote and prehnite that indicate protolith composition and temperatures and pressures of multiple generations of faulting and alteration, respectively; and (c) discriminates between spectrally similar carbonate and serpentine phases and carbonate solid solutions. In natural magnesite veins, minor amounts of ferrous iron can appear similar to olivine's strong 1-µm absorption, though no olivine is present. We also find that mineral identification for carbonate and serpentine in mixtures with each other is strongly scale- and texture-dependent; ∼40 area% dolomite in mm-scale veins at one serpentinite outcrop and ∼18 area% serpentine in a calcite-rich travertine outcrop are not discriminated until spatial scales of <∼1-2 cm/pixel. We found biological materials, for example bacterial mats versus vascular plants, are differentiated using wavelengths <1 µm while shortwave infrared wavelengths >1 µm are required to identify most organic materials and distinguish most mineral phases.

2.
Nature ; 505(7482): 204-7, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24291793

RESUMEN

Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

3.
Nature ; 432(7014): 156-7, 2004 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-15538348
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA