Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
FEBS J ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38468592

RESUMEN

G protein-coupled receptor (GPCR) oligomerization is a highly debated topic in the field. While initially believed to function as monomers, current literature increasingly suggests that these cell surface receptors, spanning almost all GPCR families, function as homo- or hetero-oligomers. Yet, the functional consequences of these oligomeric complexes remain largely unknown. Adhesion GPCRs (aGPCRs) present an intriguing family of receptors characterized by their large and multi-domain N-terminal fragments (NTFs), intricate activation mechanisms, and the prevalence of numerous splice variants in almost all family members. In the present study, bioluminescence energy transfer (BRET) and Förster resonance energy transfer (FRET) were used to study the homo-oligomerization of adhesion G protein-coupled receptor G1 (ADGRG1; also known as GPR56) and to assess the involvement of NTFs in these receptor complexes. Based on the results presented herein, we propose that ADGRG1 forms 7-transmembrane-driven homo-oligomers on the plasma membrane. Additionally, Stachel motif interactions appear to influence the conformation of these receptor complexes.

2.
Basic Clin Pharmacol Toxicol ; 133(4): 331-341, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37056198

RESUMEN

GPR56/ADGRG1 is an adhesion G protein-coupled receptor (GPCR) and mutations on this receptor cause cortical malformation due to the over-migration of neural progenitor cells on brain surface. At pial surface, GPR56 interacts with collagen III, induces Rho-dependent activation through Gα12/13 and inhibits the neuronal migration. In human glioma cells, GPR56 inhibits cell migration through Gαq/11 -dependent Rho pathway. GPR56-tetraspanin complex is known to couple Gαq/11 . GPR56 is an aGPCR that couples with various G proteins and signals through different downstream pathways. In this study, bilateral frontoparietal polymicrogyria (BFPP) mutants disrupting GPR56 function but remaining to be expressed on plasma membrane were used to study receptor signalling through Gα12 , Gα13 and Gα11 with BRET biosensors. GPR56 showed coupling with all three G proteins and activated heterotrimeric G protein signalling upon stimulation with Stachel peptide. However, BFPP mutants showed different signalling defects for each G protein indicative of distinct activation and signalling properties of GPR56 for Gα12 , Gα13 or Gα11 . ß-arrestin recruitment was also investigated following the activation of GPR56 with Stachel peptide using BRET biosensors. N-terminally truncated GPR56 showed enhanced ß-arrestin recruitment; however, neither wild-type receptor nor BFPP mutants gave any measurable recruitment upon Stachel stimulation, pointing different activation mechanisms for ß-arrestin involvement.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Mutación , Proteínas de Unión al GTP/metabolismo , Péptidos , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
3.
FEBS J ; 289(24): 7610-7630, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34729908

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Adhesión Celular
4.
J Phys Chem B ; 125(33): 9526-9536, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34433281

RESUMEN

Oligomerization of G protein-coupled receptors (GPCRs) may play important roles in maturation, internalization, signaling, and pharmacology of these receptors. However, the nature and extent of their oligomerization is still under debate. In our study, Ste2p, a yeast mating pheromone GPCR, was tagged with enhanced green fluorescent protein (EGFP), mCherry, and with split florescent protein fragments at the receptor C-terminus. The Förster resonance energy transfer (FRET) technique was used to detect receptors' oligomerization by calculating the energy transfer from EGFP to mCherry. Stimulation of Ste2p oligomers with the receptor ligand did not result in any significant change on observed FRET values. The bimolecular fluorescence complementation (BiFC) assay was combined with FRET to further investigate the tetrameric complexes of Ste2p. Our results suggest that in its quiescent (nonligand-activated) state, Ste2p is found at least as a tetrameric complex on the plasma membrane. Intriguingly, receptor tetramers in their active form showed a significant increase in FRET. This study provides a direct in vivo visualization of Ste2p tetramers and the pheromone effect on the extent of the receptor oligomerization.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transferencia Resonante de Energía de Fluorescencia , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores del Factor de Conjugación/genética , Receptores del Factor de Conjugación/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biochim Biophys Acta Biomembr ; 1859(12): 2435-2446, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28958779

RESUMEN

G protein coupled receptors bind ligands that initiate intracellular signaling cascades via heterotrimeric G proteins. In this study, involvement of the N-terminal residues of yeast G-alpha (Gpa1p) with the C-terminal residues of a full-length or C-terminally truncated Ste2p were investigated using bioluminescence resonance energy transfer (BRET), a non-radiative energy transfer phenomenon where protein-protein interactions can be quantified between a donor bioluminescent molecule and a suitable acceptor fluorophore. Constitutive and position-dependent BRET signal was observed in the absence of agonist (α-factor). Upon the activation of the receptors with α-factor, no significant change in BRET signal was observed. The location of Ste2p-Gpa1p heterodimer was investigated using confocal fluorescence microscopy and bimolecular fluorescence complementation (BiFC) assay, a technique where two non-fluorescent fragments of a fluorescent protein reassemble in vivo to restore fluorescence property thereby directly reporting a protein-protein interaction. BiFC experiments resulted in a dimerization signal intracellularly during biosynthesis on the endoplasmic reticulum (ER) and on the plasma membrane (PM). The constitutive BRET and BiFC signals observed on ER between Ste2p and Gpa1p in their quiescent and activated states are indicative of pre-coupling between these two proteins. This study is the first to show that the extreme N-terminus of yeast G protein alpha subunit is in close proximity to its receptor. The data suggests a pre-coupled heterodimer prior to receptor activation. The images presented in this study are the first direct in vivo evidence showing the localization of receptor - G protein heterodimers during biosynthesis and before reaching the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Factor de Apareamiento/metabolismo , Receptores del Factor de Conjugación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Membrana Celular/química , Retículo Endoplásmico/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ligandos , Factor de Apareamiento/genética , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores del Factor de Conjugación/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
6.
Biochim Biophys Acta Biomembr ; 1859(5): 698-711, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28073700

RESUMEN

Dimerization of G protein-coupled receptors (GPCR) may play an important role in maturation, internalization, signaling and/or pharmacology of these receptors. However, the location where dimerization occurs is still under debate. In our study, variants of Ste2p, a yeast mating pheromone GPCR, were tagged with split EGFP (enhanced green fluorescent protein) fragments inserted between transmembrane domain seven and the C-terminus or appended to the C-terminus. Bimolecular Fluorescence Complementation (BiFC) assay was used to determine where receptor dimerization occurred during protein trafficking by monitoring generation of EGFP fluorescence, which occurred upon GPCR dimerization. Our results suggest that these tagged receptors traffic to the membrane as monomers, undergo dimerization or higher ordered oligomerization predominantly on the plasma membrane, and are internalized as dimers/oligomers. This study is the first to provide direct in vivo visualization of GPCR dimerization/oligomerization, during trafficking to and from the plasma membrane.


Asunto(s)
Membrana Celular/química , Multimerización de Proteína , Receptores Acoplados a Proteínas G/química , Receptores del Factor de Conjugación/química , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...