Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 5302, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351932

RESUMEN

The Yucatán Peninsula, Mexico is a carbonate platform well-known for extensive karst networks of densely stratified aquifer ecosystems. This aquifer supports diverse anchialine fauna, including species of the globally distributed anchialine shrimp genus Typhlatya (Atyidae). Four species (T. campecheae, T. pearsei, T. dzilamensis and T. mitchelli) are endemic to the Peninsula, of which three are federally listed in Mexico. This first integrative evaluation (i.e., molecular, morphological, broad geographic and type locality sampling, and environmental data) of Yucatán Typhlatya reveals considerable species identity conflict in prior phylogenetic assessments, broad species ranges, syntopy within cave systems and five genetic lineages (of which two are new to science). Despite sampling from the type locality of endangered T. campecheae, specimens (and molecular data) were indistinguishable from vulnerable T. pearsei. Ancestral/divergence reconstructions support convergent evolution of a low-salinity ancestor for a post-Paleogene arc Yucatán + Cuba Typhlatya clade within the anchialine Atyidae clade. A secondary adaptation for the coastal-restricted euryhaline (2-37 psu), Typhlatya dzilamensis (unknown conservation status) was identified, while remaining species lineages were low-salinity (< 5 psu) adapted and found within the meteoric lens of inland and coastal caves. This study demonstrates the need for integrative/interdisciplinary approaches when conducting biodiversity assessments in complex and poorly studied aquifers.


Asunto(s)
Decápodos , Agua Subterránea , Animales , Decápodos/genética , Ecosistema , México , Filogenia
2.
Oncol Lett ; 18(6): 6909-6916, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31788130

RESUMEN

Lonidamine, 6-Diazo-5-oxo-L-norleucine (DON) and orlistat are well known inhibitors of glycolysis, glutaminolysis and of de novo fatty acid synthesis, respectively. Although their antitumor effects have been explored in detail, the potential inhibition of the malignant metabolic phenotype and its influence on the expression of chemokines and growth factors involved in colon cancer, have not been previously reported to the best of our knowledge. In the present study, dose-response curves with orlistat, lonidamine or DON were generated from cell viability assays conducted in SW480 colon cancer cells. In addition, the synergistic effect of these compounds was evaluated in SW480 human colon cancer cells. The determination of the doses used for maximum synergistic efficacy led to the exploration of the mRNA levels of the target genes hexokinase-2 (HK2), glutaminase-1 (GLS-1) and fatty acid synthase (FASN) in human SW480 and murine CT26.WT colon cancer cells. The cell viability was evaluated following transfection with small interfering (si)RNA targeting these genes and was assessed with trypan blue. The expression levels of chemokines and growth factors were quantified in the supernatant of SW480 cells with LEGENDplex™. The combination of lonidamine, DON and orlistat resulted in a synergistic cytotoxic effect and induced the transcription of the corresponding gene targets but their corresponding proteins were actually downregulated. The downregulation of the expression levels of HK2, GLS-1 and FASN following transfection of the cells with the corresponding siRNA sequences decreased their viability. The treatment significantly reduced the expression levels of 9 chemokines [interleukin-9, C-X-C motif chemokine ligand (CXCL) 10, eotaxin, chemokine ligand (CCL) 9, CXCL5, CCL20, CXCL1, CXCL11 and CCCL4] and one growth factor (stem cell factor). These changes were associated with decreased phosphorylated-nuclear factor κB-p65. The data demonstrate that lonidamine, DON and orlistat in combination reduce the expression levels of chemokines and growth factors in colon cancer cells. Additional research is required to investigate the exact way by which both tumor and stromal cells regulate the expression levels of chemokines and growth factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA