Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 30(10): 2097-2110, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38457288

RESUMEN

PURPOSE: Clinical implications of neoadjuvant immunotherapy in patients with locally advanced but resectable head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. PATIENTS AND METHODS: Patients with resectable HNSCC were randomized to receive a single dose of preoperative durvalumab (D) with or without tremelimumab (T) before resection, followed by postoperative (chemo)radiotherapy based on multidisciplinary discretion and 1-year D treatment. Artificial intelligence (AI)-powered spatial distribution analysis of tumor-infiltrating lymphocytes and high-dimensional profiling of circulating immune cells tracked dynamic intratumoral and systemic immune responses. RESULTS: Of the 48 patients enrolled (D, 24 patients; D+T, 24 patients), 45 underwent surgical resection per protocol (D, 21 patients; D+T, 24 patients). D±T had a favorable safety profile and did not delay surgery. Distant recurrence-free survival (DRFS) was significantly better in patients treated with D+T than in those treated with D monotherapy. AI-powered whole-slide image analysis demonstrated that D+T significantly reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast with the D monotherapy or cytotoxic chemotherapy. High-dimensional profiling of circulating immune cells revealed a significant expansion of T-cell subsets characterized by proliferation and activation in response to D+T therapy, which was rare following D monotherapy. Importantly, expansion of specific clusters in CD8+ T cells and non-regulatory CD4+ T cells with activation and exhaustion programs was associated with prolonged DRFS in patients treated with D+T. CONCLUSIONS: Preoperative D±T is feasible and may benefit patients with resectable HNSCC. Distinct changes in the tumor microenvironment and circulating immune cells were induced by each treatment regimen, warranting further investigation.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeza y Cuello , Terapia Neoadyuvante , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Masculino , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Persona de Mediana Edad , Femenino , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anciano , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Neoplasias de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Terapia Neoadyuvante/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Adulto , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
2.
Comput Struct Biotechnol J ; 21: 2296-2304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035549

RESUMEN

Single-cell transcriptome data provide a unique opportunity to explore the gene networks of a particular cell type. However, insufficient capture rate and high dimensionality of single-cell RNA sequencing (scRNA-seq) data challenge cell-type-specific gene network (CGN) reconstruction. Here, we demonstrated that the imputation of scRNA-seq data enables reconstruction of CGNs by effective retrieval of gene functional associations. We reconstructed CGNs for seven primary and nine metastatic breast cancer cell lines using scRNA-seq data with imputation. Key genes for primary or metastatic cell lines were prioritized based on network centrality measures and CGN hub genes that were presumed to be the major determinant of cell type characteristics. To identify novel genes in breast cancer metastasis, we used the average rank difference of centrality between the primary and metastatic cell lines. Genes predicted using CGN centrality analysis were more enriched for known breast cancer metastatic genes than those predicted using differential expression. The molecular chaperone CCT2 was identified as a novel gene for breast metastasis during knockdown assays of several candidate genes. Overall, our study demonstrated an effective CGN reconstruction technique with imputation of scRNA-seq data and the feasibility of identifying key genes for particular cell subsets using single-cell network analysis.

3.
Nucleic Acids Res ; 51(2): e8, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36350625

RESUMEN

A major challenge in single-cell biology is identifying cell-type-specific gene functions, which may substantially improve precision medicine. Differential expression analysis of genes is a popular, yet insufficient approach, and complementary methods that associate function with cell type are required. Here, we describe scHumanNet (https://github.com/netbiolab/scHumanNet), a single-cell network analysis platform for resolving cellular heterogeneity across gene functions in humans. Based on cell-type-specific gene networks (CGNs) constructed under the guidance of the HumanNet reference interactome, scHumanNet displayed higher functional relevance to the cellular context than CGNs built by other methods on single-cell transcriptome data. Cellular deconvolution of gene signatures based on network compactness across cell types revealed breast cancer prognostic markers associated with T cells. scHumanNet could also prioritize genes associated with particular cell types using CGN centrality and identified the differential hubness of CGNs between disease and healthy conditions. We demonstrated the usefulness of scHumanNet by uncovering T-cell-specific functional effects of GITR, a prognostic gene for breast cancer, and functional defects in autism spectrum disorder genes specific for inhibitory neurons. These results suggest that scHumanNet will advance our understanding of cell-type specificity across human disease genes.


Asunto(s)
Análisis de la Célula Individual , Femenino , Humanos , Trastorno del Espectro Autista/genética , Neoplasias de la Mama/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Linfocitos T , Transcriptoma , Programas Informáticos
4.
Nucleic Acids Res ; 50(D1): D632-D639, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34747468

RESUMEN

Network medicine has proven useful for dissecting genetic organization of complex human diseases. We have previously published HumanNet, an integrated network of human genes for disease studies. Since the release of the last version of HumanNet, many large-scale protein-protein interaction datasets have accumulated in public depositories. Additionally, the numbers of research papers and functional annotations for gene-phenotype associations have increased significantly. Therefore, updating HumanNet is a timely task for further improvement of network-based research into diseases. Here, we present HumanNet v3 (https://www.inetbio.org/humannet/, covering 99.8% of human protein coding genes) constructed by means of the expanded data with improved network inference algorithms. HumanNet v3 supports a three-tier model: HumanNet-PI (a protein-protein physical interaction network), HumanNet-FN (a functional gene network), and HumanNet-XC (a functional network extended by co-citation). Users can select a suitable tier of HumanNet for their study purpose. We showed that on disease gene predictions, HumanNet v3 outperforms both the previous HumanNet version and other integrated human gene networks. Furthermore, we demonstrated that HumanNet provides a feasible approach for selecting host genes likely to be associated with COVID-19.


Asunto(s)
Algoritmos , COVID-19/genética , Enfermedades Transmisibles/genética , Bases de Datos Genéticas , Redes Reguladoras de Genes , Programas Informáticos , COVID-19/virología , Enfermedades Transmisibles/clasificación , Ontología de Genes , Humanos , Internet , Anotación de Secuencia Molecular , Mapeo de Interacción de Proteínas , SARS-CoV-2/patogenicidad
5.
Exp Mol Med ; 52(11): 1798-1808, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33244151

RESUMEN

Understanding cellular heterogeneity is the holy grail of biology and medicine. Cells harboring identical genomes show a wide variety of behaviors in multicellular organisms. Genetic circuits underlying cell-type identities will facilitate the understanding of the regulatory programs for differentiation and maintenance of distinct cellular states. Such a cell-type-specific gene network can be inferred from coregulatory patterns across individual cells. Conventional methods of transcriptome profiling using tissue samples provide only average signals of diverse cell types. Therefore, reconstructing gene regulatory networks for a particular cell type is not feasible with tissue-based transcriptome data. Recently, single-cell omics technology has emerged and enabled the capture of the transcriptomic landscape of every individual cell. Although single-cell gene expression studies have already opened up new avenues, network biology using single-cell transcriptome data will further accelerate our understanding of cellular heterogeneity. In this review, we provide an overview of single-cell network biology and summarize recent progress in method development for network inference from single-cell RNA sequencing (scRNA-seq) data. Then, we describe how cell-type-specific gene networks can be utilized to study regulatory programs specific to disease-associated cell types and cellular states. Moreover, with scRNA data, modeling personal or patient-specific gene networks is feasible. Therefore, we also introduce potential applications of single-cell network biology for precision medicine. We envision a rapid paradigm shift toward single-cell network analysis for systems biology in the near future.


Asunto(s)
Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Heterogeneidad Genética , Análisis de la Célula Individual , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Humanos , Análisis de la Célula Individual/métodos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...