Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 20(3): 436-452, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29396255

RESUMEN

BACKGROUND AIMS: To produce an anti-leukemic effect after hematopoietic stem cell transplantation we have long considered the theoretical possibility of using banks of HLA-DP specific T-cell clones transduced with a suicide gene. For that application as for any others, a clonal strategy is constrained by the population doubling (PD) potential of T cells, which has been rarely explored or exploited. METHODS: We used clinical-grade conditions and two donors who were homozygous and identical for all HLA-alleles except HLA-DP. After mixed lymphocyte culture and transduction, we obtained 14 HLA-DP-specific T-cell clones transduced with the HSV-TK suicide gene. Clones were then selected on the basis of their specificity and functional characteristics and evaluated for their doubling potential. RESULTS: After these steps of selection the clone NAT-DP4(TK), specific for HLA-DPB1*04:01/04:02, which produced high levels of interferon-γ (IFNγ), tumor necrosis factor (TNF), interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), was fully sequenced. It has two copies of the HSV-TK suicide transgene whose localizations were determined. Four billion NAT-DP4(TK) cells were frozen after 50 PDs. Thawed NAT-DP4(TK) cells retain the potential to undergo 50 additional PDs, a potential very far beyond that required to produce a biological effect. This PD potential was confirmed on 6/16 additional different T-cell clones. This type of well-defined clone can also support a second genetic modification with CAR constructs. CONCLUSION: The possibility of choosing rare donors and exploiting the natural proliferative potential of T lymphocytes may dramatically reduce the clinical and immunologic complexity of adoptive transfer protocols that rely on the use of third-party T-cell populations.


Asunto(s)
Células Clonales/citología , Técnicas Citológicas/métodos , Cadenas beta de HLA-DP , Linfocitos T/citología , Animales , Donantes de Sangre , Genes Transgénicos Suicidas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Cadenas beta de HLA-DP/genética , Cadenas beta de HLA-DP/inmunología , Humanos , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Prueba de Cultivo Mixto de Linfocitos , Ratones , Linfocitos T/inmunología , Timidina Quinasa/genética , Transducción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Inform ; 7: 41-56, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19352458

RESUMEN

Mutations in two major genes, BRCA1 and BRCA2, account for up to 30% of families with hereditary breast cancer. Unfortunately, in most families there is little to indicate which gene should be targeted first for mutation screening, which is labor intensive, time consuming and often prohibitively expensive. As BRCA1 is a tumor suppressor gene involved in various cellular processes, heterozygous mutations could deregulate dependent pathways, such as DNA damage response, and disturb transcriptional activity of genes involved in the downstream signaling cascade. We investigated gene expression profiling in peripheral blood lymphocytes to evaluate this strategy for distinguishing BRCA1 mutation carriers from non-carriers. RNA from whole blood samples of 15 BRCA1 mutation carriers and 15 non-carriers from BRCA1 or BRCA2 families were hybridized to Agilent Technologies Whole Human Genome OligoMicroarrays (4 x 44 K multiplex format) containing 41,000 unique human genes and transcripts. Gene expression data were analyzed with Welch's t-tests and submitted to hierarchical clustering (GeneSpring GX software, Agilent Technologies). Statistical analysis revealed a slight tendency for 133 genes to be differentially expressed between BRCA1 mutation carriers and non-carriers. However, hierarchical clustering of these genes did not accurately discriminate BRCA1 mutation carriers from non-carriers. Expression variation for these genes according to BRCA1 mutation status was weak. In summary, microarray profiling of untreated whole blood does not appear to be informative in identifying breast cancer risk due to BRCA1 mutation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...