Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angiogenesis ; 26(3): 463-475, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36973482

RESUMEN

APJ has been extensively described in the pathophysiology of angiogenesis and cell proliferation. The prognostic value of APJ overexpression in many diseases is now established. This study aimed to design a PET radiotracer that specifically binds to APJ. Apelin-F13A-NODAGA (AP747) was synthesized and radiolabeled with gallium-68 ([68Ga]Ga-AP747). Radiolabeling purity was excellent (> 95%) and stable up to 2 h. Affinity constant of [67Ga]Ga-AP747 was measured on APJ-overexpressing colon adenocarcinoma cells and was in nanomolar range. Specificity of [68Ga]Ga-AP747 for APJ was evaluated in vitro by autoradiography and in vivo by small animal PET/CT in both colon adenocarcinoma mouse model and Matrigel plug mouse model. Dynamic of [68Ga]Ga-AP747 PET/CT biodistributions was realized on healthy mice and pigs for two hours, and quantification of signal in organs showed a suitable pharmacokinetic profile for PET imaging, largely excreted by urinary route. Matrigel mice and hindlimb ischemic mice were submitted to a 21-day longitudinal follow-up with [68Ga]Ga-AP747 and [68Ga]Ga-RGD2 small animal PET/CT. [68Ga]Ga-AP747 PET signal in Matrigel was significantly more intense than that of [68Ga]Ga-RGD2. Revascularization of the ischemic hind limb was followed by LASER Doppler. In the hindlimb, [68Ga]Ga-AP747 PET signal was more than twice higher than that of [68Ga]Ga-RGD2 on day 7, and significantly superior over the 21-day follow-up. A significant, positive correlation was found between the [68Ga]Ga-AP747 PET signal on day 7 and late hindlimb perfusion on day 21. We developed a new PET radiotracer that specifically binds to APJ, [68Ga]Ga-AP747 that showed more efficient imaging properties than the most clinically advanced tracer of angiogenesis, [68Ga]Ga-RGD2.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Animales , Ratones , Porcinos , Apelina , Receptores de Apelina , Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Imagen Molecular/métodos , Oligopéptidos
2.
Pharmaceutics ; 14(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745848

RESUMEN

Prostate Specific Membrane Antigen (PSMA)-directed radionuclide therapy has gained an important role in the management of advanced castration-resistant prostate cancer. Although extremely promising, the prolongation in survival and amelioration of disease-related symptoms must be balanced against the direct toxicities of the treatment. Xerostomia is amongst the most common and debilitating of these, particularly when using an alpha emitter. It is therefore of main importance to develop new preventive strategies. This preclinical study has evaluated the effect of α-adrenergic and anticholinergic drugs on [99mTc]TcO4− Single Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and [68Ga]Ga-PSMA-11 Positron Emission Tomography (PET/CT). Methods: The effects of phenylephrine, scopolamine, atropine, and ipratropium on salivary glands uptake were evaluated in non-tumor-bearing mice by [99mTc]TcO4− microSPECT/CT. The most efficient identified strategy was evaluated in non-tumor-bearing and xenografted mice by [68Ga]Ga-PSMA-11 PET/CT. Results: Scopolamine and atropine showed a significant decrease in the parotid glands' uptake on SPECT/CT whereas phenylephrine and ipratropium failed. Atropine premedication (sublingual route), which was the most effective strategy, also showed a drastic decrease of [68Ga]Ga-PSMA-11 salivary glands' uptake in both non-tumor-bearing mice (−51.6% for the parotids, p < 0.0001) and human prostate adenocarcinoma xenografted mice (−26.8% for the parotids, p < 0.0001). Conclusion: Premedication with a local administration of atropine could represent a simple, safe, and efficient approach for reducing salivary glands' uptake.

3.
Sci Rep ; 7(1): 5610, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28717145

RESUMEN

Beyond their hemostatic functions, platelets alter their inflammatory response according to the bacterial stimulus. Staphylococcus aureus is associated with exacerbated inflammation and thrombocytopenia, which is associated with poor prognosis during sepsis. Acetylsalicylic acid and statins prevent platelet aggregation and decrease the mortality rate during sepsis. Therefore, we assessed whether these two molecules could reduce in vitro platelet activation and the inflammatory response to S. aureus. Platelets were exposed to clinical strains of S. aureus in the presence or absence of acetylsalicylic acid or fluvastatin. Platelet activation, aggregation, and release of soluble sCD62P, sCD40 Ligand, RANTES and GROα were assessed. Platelet cell death was evaluated by analyzing the mitochondrial membrane potential, phosphatidylserine exposure, platelet microparticle release and caspase-3 activation. All S. aureus strains induced platelet activation but not aggregation and decreased the platelet count, the expression of cell death markers and the release of RANTES and GROα. Acetylsalicylic acid but not fluvastatin limited platelet activation and inflammatory factor release and restored the platelet count by protecting platelets from Staphylococcus-induced expression of cell death markers. This study demonstrates that acetylsalicylic acid limits S. aureus-induced effects on platelets by reducing cell death, revealing new strategies to reduce the platelet contribution to bacteremia-associated inflammation.


Asunto(s)
Aspirina/farmacología , Biomarcadores/metabolismo , Plaquetas/fisiología , Muerte Celular , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Adhesión Bacteriana , Plaquetas/citología , Plaquetas/efectos de los fármacos , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
4.
BMC Immunol ; 16: 26, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25913718

RESUMEN

Blood platelets are first aimed at ensuring primary hemostasis. Beyond this role, they have been acknowledged as having functions in the maintenance of the vascular arborescence and, more recently, as being also innate immune cells, devoted notably to the detection of danger signals, of which infectious ones. Platelets express pathogen recognition receptors that can sense bacterial and viral moieties. Besides, several molecules that bind epithelial or sub-endothelial molecules and, so forth, are involved in hemostasis, happen to be able to ligate viral determinants, making platelets capable of either binding viruses or even to be infected by some of them. Further, as platelets express both Fc-receptors for Ig and complement receptors, they also bind occasionally virus-Ig or virus-Ig-complement immune complexes. Interplays of viruses with platelets are very complex and viral infections often interfere with platelet number and functions. Through a few instances of viral infections, the present review aims at presenting some of the most important interactions from pathophysiological and clinical points of view, which are observed between human viruses and platelets.


Asunto(s)
Plaquetas/inmunología , Virosis/inmunología , Virus/inmunología , Animales , Plaquetas/virología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Acoplamiento Viral
5.
Front Immunol ; 6: 82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25767472

RESUMEN

Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response.

6.
BMC Immunol ; 15: 15, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24755160

RESUMEN

BACKGROUND: Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. RESULTS: The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbß3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. CONCLUSIONS: Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion.


Asunto(s)
Plaquetas/inmunología , Plaquetas/metabolismo , Citocinas/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Streptococcus sanguis/inmunología , Biomarcadores/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Activación Plaquetaria/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA