Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 73(18): 6115-6132, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35639812

RESUMEN

Small secreted peptides have been described as key contributors to complex signalling networks that control plant development and stress responses. The Brassicaceae-specific PROSCOOP family encodes precursors of Serine riCh endOgenOus Peptides (SCOOPs). In Arabidopsis SCOOP12 has been shown to promote the defence response against pathogens and to be involved in root development. Here, we explore its role as a moderator of Arabidopsis primary root development. We show that the PROSCOOP12 null mutation leads to longer primary roots through the development of longer differentiated cells while PROSCOOP12 overexpression induces dramatic plant growth impairments. In comparison, the exogenous application of synthetic SCOOP12 peptide shortens roots through meristem size and cell length reductions. Moreover, superoxide anion (O2·-) and hydrogen peroxide (H2O2) production in root tips vary according to SCOOP12 abundance. By using reactive oxygen species scavengers that suppress the proscoop12 phenotype, we showed that root growth regulation by SCOOP12 is associated with reactive oxygen species metabolism. Furthermore, our results suggest that peroxidases act as potential SCOOP12 downstream targets to regulate H2O2 production, which in turn triggers cell wall modifications in root. Finally, a massive transcriptional reprogramming, including the induction of genes from numerous other pathways, including ethylene, salicylic acid, and glucosinolates biosynthesis, was observed, emphasizing its dual role in defence and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxidos/metabolismo , Glucosinolatos/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo , División Celular , Homeostasis , Péptidos/metabolismo , Ácido Salicílico/metabolismo , Peroxidasas/genética , Serina/metabolismo
2.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015094

RESUMEN

Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.


Asunto(s)
Arabidopsis/embriología , Adhesión Celular/genética , Adhesión Celular/fisiología , Aparato de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Aparato de Golgi/genética , Hipocótilo/citología , Hipocótilo/genética , Manosa/análisis , Proteínas de la Membrana/genética , Metiltransferasas/genética , Pectinas/metabolismo
3.
Plants (Basel) ; 10(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918513

RESUMEN

The cellulose- and pectin-rich plant cell wall defines cell structure, mediates defense against pathogens, and facilitates plant cell adhesion. An adhesion mutant screen of Arabidopsis hypocotyls identified a new allele of QUASIMODO2 (QUA2), a gene required for pectin accumulation and whose mutants have reduced pectin content and adhesion defects. A suppressor of qua2 was also isolated and describes a null allele of SABRE (SAB), which encodes a previously described plasma membrane protein required for longitudinal cellular expansion that organizes the tubulin cytoskeleton. sab mutants have increased pectin content, increased levels of expression of pectin methylesterases and extensins, and reduced cell surface area relative to qua2 and Wild Type, contributing to a restoration of cell adhesion.

4.
Biol Open ; 7(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29945874

RESUMEN

Microtubules are involved in plant development and adaptation to their environment, but the sustaining molecular mechanisms remain elusive. Microtubule-end-binding 1 (EB1) proteins participate in directional root growth in Arabidopsis thaliana However, a connection to the underlying microtubule array has not been established yet. We show here that EB1 proteins contribute to the organization of cortical microtubules in growing epidermal plant cells, without significant modulation of microtubule dynamics. Using super-resolution stimulated emission depletion (STED) microscopy and an original quantification approach, we also demonstrate a significant reduction of apparent microtubule bundling in cytoplasmic-EB1-deficient plants, suggesting a function for EB1 in the interaction between adjacent microtubules. Furthermore, we observed root growth defects in EB1-deficient plants, which are not related to cell division impairment. Altogether, our results support a role for EB1 proteins in root development, in part by maintaining the organization of cortical microtubules.This article has an associated First Person interview with the first author of the paper.

5.
Development ; 143(14): 2536-40, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27317803

RESUMEN

Cell-to-cell adhesion in plants is mediated by the cell wall and the presence of a pectin-rich middle lamella. However, we know very little about how the plant actually controls and maintains cell adhesion during growth and development and how it deals with the dynamic cell wall remodeling that takes place. Here we investigate the molecular mechanisms that control cell adhesion in plants. We carried out a genetic suppressor screen and a genetic analysis of cell adhesion-defective Arabidopsis thaliana mutants. We identified a genetic suppressor of a cell adhesion defect affecting a putative O-fucosyltransferase. Furthermore, we show that the state of cell adhesion is not directly linked with pectin content in the cell wall but instead is associated with altered pectin-related signaling. Our results suggest that cell adhesion is under the control of a feedback signal from the state of the pectin in the cell wall. Such a mechanism could be necessary for the control and maintenance of cell adhesion during growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Fucosiltransferasas/metabolismo , Arabidopsis/genética , Adhesión Celular , Pared Celular/metabolismo , Genes de Plantas , Pruebas Genéticas , Aparato de Golgi/metabolismo , Modelos Biológicos , Mutación/genética , Pectinas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Supresión Genética
7.
Plant Biotechnol J ; 10(5): 609-20, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22458713

RESUMEN

Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C6C1 lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C6C1 monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis.


Asunto(s)
Arabidopsis/metabolismo , Hidroliasas/metabolismo , Lignina/biosíntesis , Tallos de la Planta/metabolismo , Arabidopsis/genética , Biomasa , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidroliasas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polimerizacion , Regiones Promotoras Genéticas , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...