Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107360, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735477

RESUMEN

The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest.

2.
Nucleic Acids Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661232

RESUMEN

Organisms possess a wide variety of proteins with diverse amino acid sequences, and their synthesis relies on the ribosome. Empirical observations have led to the misconception that ribosomes are robust protein factories, but in reality, they have several weaknesses. For instance, ribosomes stall during the translation of the proline-rich sequences, but the elongation factor EF-P assists in synthesizing proteins containing the poly-proline sequences. Thus, living organisms have evolved to expand the translation capability of ribosomes through the acquisition of translation elongation factors. In this study, we have revealed that Escherichia coli ATP-Binding Cassette family-F (ABCF) proteins, YheS, YbiT, EttA and Uup, individually cope with various problematic nascent peptide sequences within the exit tunnel. The correspondence between noncanonical translations and ABCFs was YheS for the translational arrest by nascent SecM, YbiT for poly-basic sequence-dependent stalling and poly-acidic sequence-dependent intrinsic ribosome destabilization (IRD), EttA for IRD at the early stage of elongation, and Uup for poly-proline-dependent stalling. Our results suggest that ATP hydrolysis-coupled structural rearrangement and the interdomain linker sequence are pivotal for handling 'hard-to-translate' nascent peptides. Our study highlights a new aspect of ABCF proteins to reduce the potential risks that are encoded within the nascent peptide sequences.

3.
Cell Rep ; 42(12): 113569, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38071619

RESUMEN

Ribosomes polymerize nascent peptides through repeated inter-subunit rearrangements between the classic and hybrid states. The peptidyl-tRNA, the intermediate species during translation elongation, stabilizes the translating ribosome to ensure robust continuity of elongation. However, the translation of acidic residue-rich sequences destabilizes the ribosome, leading to a stochastic premature translation cessation termed intrinsic ribosome destabilization (IRD), which is still ill-defined. Here, we dissect the molecular mechanisms underlying IRD in Escherichia coli. Reconstitution of the IRD event reveals that (1) the prolonged ribosome stalling enhances IRD-mediated translation discontinuation, (2) IRD depends on temperature, (3) the destabilized 70S ribosome complex is not necessarily split, and (4) the destabilized ribosome is subjected to peptidyl-tRNA hydrolase-mediated hydrolysis of the peptidyl-tRNA without subunit splitting or recycling factors-mediated subunit splitting. Collectively, our data indicate that the translation of acidic-rich sequences alters the conformation of the 70S ribosome to an aberrant state that allows the noncanonical premature termination.


Asunto(s)
Proteínas de Escherichia coli , Biosíntesis de Proteínas , Péptidos/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
J Biochem ; 173(4): 227-236, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36722132

RESUMEN

Proteins that exsert physiological functions during being translated have been discovered from prokaryotes to eukaryotes. These proteins, also called regulatory nascent chains, are common in interacting co-translationally with the ribosomes to stall them. In most cases, such a translational arrest is induced or released in response to changes in the intracellular environment. Cells take advantage of such an environmental sensitivity as a sensor to feedback-regulate gene expression. Recent studies reveal that certain nascent chains could also destabilize the translating ribosomes, leading to stochastic premature translation termination. In this review, we introduce several examples of bacterial nascent chain-based mechanisms of translation regulation by which bacteria regulate cellular functions.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , Bacterias/genética
5.
Nucleic Acids Res ; 51(5): e30, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36715318

RESUMEN

Life depends on proteins, which all exist in nascent states when the growing polypeptide chain is covalently attached to a tRNA within the ribosome. Although the nascent chains, i.e. polypeptidyl-tRNAs (pep-tRNAs), are considered as merely transient intermediates during protein synthesis, recent advances have revealed that they are directly involved in a variety of cell functions, such as gene expression control. An increasing appreciation for fine-tuning at translational levels demands a general method to handle the pep-tRNAs on a large scale. Here, we developed a method termed peptidyl-tRNA enrichment using organic extraction and silica adsorption (PETEOS), and then identify their polypeptide moieties by mass spectrometry. As a proof-of-concept experiment using Escherichia coli, we identified ∼800 proteins derived from the pep-tRNAs, which were markedly biased towards the N-termini in the proteins, reflecting that PETEOS captured the intermediate pep-tRNA population during translation. Furthermore, we observed the changes in the pep-tRNA set in response to heat shock or antibiotic treatments. In summary, PETEOS will complement conventional methods to investigate nascent chains in the cell.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Péptidos/química
6.
Mol Microbiol ; 119(1): 44-58, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36471624

RESUMEN

Escherichia coli has multiple pathways to release nonproductive ribosome complexes stalled at the 3' end of nonstop mRNA: tmRNA (SsrA RNA)-mediated trans-translation and stop codon-independent termination by ArfA/RF2 or ArfB (YaeJ). The arfA mRNA lacks a stop codon and its expression is repressed by trans-translation. Therefore, ArfA is considered to complement the ribosome rescue activity of trans-translation, but the physiological situations in which ArfA is expressed have not been elucidated. Here, we found that the excision of CP4-57 prophage adjacent to E. coli ssrA leads to the inactivation of tmRNA and switches the primary rescue pathway from trans-translation to ArfA/RF2. This "rescue-switching" rearranges not only the proteome landscape in E. coli but also the phenotype such as motility. Furthermore, among the proteins with significantly increased abundance in the ArfA+ cells, we found ZntR, whose mRNA is transcribed together as the upstream part of nonstop arfA mRNA. Repression of ZntR and reconstituted model genes depends on the translation of the downstream nonstop ORFs that trigger the trans-translation-coupled exonucleolytic degradation by polynucleotide phosphorylase (PNPase). Namely, our studies provide a novel example of trans-translation-dependent regulation and re-define the physiological roles of prophage excision.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Codón de Terminación/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Activación Viral , Ribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
7.
Nat Commun ; 13(1): 7451, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460666

RESUMEN

Robust translation elongation of any given amino acid sequence is required to shape proteomes. Nevertheless, nascent peptides occasionally destabilize ribosomes, since consecutive negatively charged residues in bacterial nascent chains can stochastically induce discontinuation of translation, in a phenomenon termed intrinsic ribosome destabilization (IRD). Here, using budding yeast and a human factor-based reconstituted translation system, we show that IRD also occurs in eukaryotic translation. Nascent chains enriched in aspartic acid (D) or glutamic acid (E) in their N-terminal regions alter canonical ribosome dynamics, stochastically aborting translation. Although eukaryotic ribosomes are more robust to ensure uninterrupted translation, we find many endogenous D/E-rich peptidyl-tRNAs in the N-terminal regions in cells lacking a peptidyl-tRNA hydrolase, indicating that the translation of the N-terminal D/E-rich sequences poses an inherent risk of failure. Indeed, a bioinformatics analysis reveals that the N-terminal regions of ORFs lack D/E enrichment, implying that the translation defect partly restricts the overall amino acid usage in proteomes.


Asunto(s)
Aminoácidos , Proteoma , Humanos , Eucariontes/genética , Péptidos/genética , Ribosomas
8.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744894

RESUMEN

The Escherichia coli chaperonin GroEL/ES (GroE) is one of the most extensively studied molecular chaperones. So far, ~80 proteins in E. coli are identified as GroE substrates that obligately require GroE for folding in vivo. In GroE-depleted cells, these substrates, when overexpressed, tend to form aggregates, whereas the GroE substrates expressed at low or endogenous levels are degraded, probably due to misfolded states. However, the protease(s) involved in the degradation process has not been identified. We conducted a mass-spectrometry-based proteomics approach to investigate the effects of three ATP-dependent proteases, Lon, ClpXP, and HslUV, on the E. coli proteomes under GroE-depleted conditions. A label-free quantitative proteomic method revealed that Lon protease is the dominant protease that degrades the obligate GroE substrates in the GroE-depleted cells. The deletion of DnaK/DnaJ, the other major E. coli chaperones, in the ∆lon strain did not cause major alterations in the expression or folding of the obligate GroE substrates, supporting the idea that the folding of these substrates is predominantly dependent on GroE.


Asunto(s)
Proteínas de Escherichia coli , Proteasa La , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteasa La/metabolismo , Proteómica
9.
EMBO J ; 40(23): e108299, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34672004

RESUMEN

Continuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, nascent polypeptide products bear an inherent risk of elongation abortion. For example, negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, weaken the translating ribosomal complex, causing certain nascent chain sequences to prematurely terminate translation. Here, we show that most potential IRD sequences in the middle of open reading frames remain cryptic and do not interrupt translation, due to two features of the nascent polypeptide. Firstly, the nascent polypeptide itself spans the exit tunnel, and secondly, its bulky amino acid residues occupy the tunnel entrance region, thereby serving as a bridge and protecting the large and small ribosomal subunits from dissociation. Thus, nascent polypeptide products have an inbuilt ability to ensure elongation continuity.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas de Lectura Abierta , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Péptidos/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo
10.
Chem Commun (Camb) ; 57(80): 10367-10370, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34541593

RESUMEN

Here we created artificial cells in which information of the genome of living cells is expressed by the elements encoded in the genome. We confirmed that the system works normally within artificial cells, which paves the way for reconstructing living cells from biomolecules.


Asunto(s)
Células Artificiales/metabolismo , Escherichia coli/genética , Genoma Bacteriano/fisiología , Biosíntesis de Proteínas/fisiología , Transcripción Genética/fisiología , Genes Bacterianos/fisiología , Glucólisis/genética , Luciferasas/genética , Luciferasas/metabolismo , ARN Mensajero/metabolismo
11.
Mol Microbiol ; 115(1): 142-156, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32959419

RESUMEN

Aggregation is an inherent characteristic of proteins. Risk management strategies to reduce aggregation are critical for cells to survive upon stresses that induce aggregation. Cells cope with protein aggregation by utilizing a variety of chaperones, as exemplified by heat-shock proteins (Hsps). The heat stress-induced expression of IbpA and IbpB, small Hsps in Escherichia coli, is regulated by the σ32 heat-shock transcriptional regulator and the temperature-dependent translational regulation via mRNA heat fluctuation. We found that, even without heat stress, either the expression of aggregation-prone proteins or the ibpA gene deletion profoundly increases the expression of IbpA. Combined with other evidence, we propose novel mechanisms for the regulation of the small Hsps expression. Oligomeric IbpA self-represses the ibpA/ibpB translation, and mediates its own mRNA degradation, but the self-repression is relieved by sequestration of IbpA into the protein aggregates. Thus, the function of IbpA as a chaperone to form co-aggregates is harnessed as an aggregation sensor to tightly regulate the IbpA level. Since the excessive preemptive supply of IbpA in advance of stress is harmful, the prodigious and rapid expression of IbpA/IbpB on demand is necessary for IbpA to function as a first line of defense against acute protein aggregation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de Choque Térmico/metabolismo , Agregado de Proteínas/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Calor , Chaperonas Moleculares/metabolismo , Procesamiento Postranscripcional del ARN/genética , Temperatura
12.
Mol Cell ; 68(3): 528-539.e5, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100053

RESUMEN

Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Magnesio/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Conformación Proteica , Estabilidad Proteica , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Relación Estructura-Actividad
13.
Proc Natl Acad Sci U S A ; 113(7): E829-38, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831095

RESUMEN

Although the importance of the nonuniform progression of elongation in translation is well recognized, there have been few attempts to explore this process by directly profiling nascent polypeptides, the relevant intermediates of translation. Such approaches will be essential to complement other approaches, including ribosome profiling, which is extremely powerful but indirect with respect to the actual translation processes. Here, we use the nascent polypeptide's chemical trait of having a covalently attached tRNA moiety to detect translation intermediates. In a case study, Escherichia coli SecA was shown to undergo nascent polypeptide-dependent translational pauses. We then carried out integrated in vivo and in vitro nascent chain profiling (iNP) to characterize 1,038 proteome members of E. coli that were encoded by the first quarter of the chromosome with respect to their propensities to accumulate polypeptidyl-tRNA intermediates. A majority of them indeed undergo single or multiple pauses, some occurring only in vitro, some occurring only in vivo, and some occurring both in vivo and in vitro. Thus, translational pausing can be intrinsically robust, subject to in vivo alleviation, or require in vivo reinforcement. Cytosolic and membrane proteins tend to experience different classes of pauses; membrane proteins often pause multiple times in vivo. We also note that the solubility of cytosolic proteins correlates with certain categories of pausing. Translational pausing is widespread and diverse in nature.


Asunto(s)
Biosíntesis de Proteínas , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/genética , Genes Bacterianos , Puromicina/farmacología , ARN de Transferencia/genética
15.
Nucleic Acids Res ; 42(21): 13339-52, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25355516

RESUMEN

Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3' end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3' end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Cisteína/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutación , Unión Proteica , ARN Mensajero/química , Proteínas de Unión al ARN/genética , Ribosomas/química
16.
Front Microbiol ; 5: 156, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782844

RESUMEN

Translation terminates at stop codon. Without stop codon, ribosome cannot terminate translation properly and reaches and stalls at the 3'-end of the mRNA lacking stop codon. Bacterial tmRNA-mediated trans-translation releases such stalled ribosome and targets the protein product to degradation by adding specific "degradation tag." Recently two alternative ribosome rescue factors, ArfA (YhdL) and ArfB (YaeJ), have been found in Escherichia coli. These three ribosome rescue systems are different each other in terms of molecular mechanism of ribosome rescue and their activity, but they are mutually related and co-operate to maintain the translation system in shape. This suggests the biological significance of ribosome rescue.

17.
Mol Microbiol ; 86(1): 37-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22857598

RESUMEN

The ribosomes stalled at the end of non-stop mRNAs must be rescued for productive cycles of cellular protein synthesis. Escherichia coli possesses at least three independent mechanisms that resolve non-productive translation complexes (NTCs). While tmRNA (SsrA) mediates trans-translation to terminate translation, ArfA (YhdL) and ArfB (YaeJ) induce hydrolysis of ribosome-tethered peptidyl-tRNAs. ArfB is a paralogue of the release factors (RFs) and directly catalyses the peptidyl-tRNA hydrolysis within NTCs. In contrast, the mechanism of the ArfA action had remained obscure beyond its ability to bind to the ribosome. Here, we characterized the ArfA pathway of NTC resolution in vitro and identified RF2 as a factor that cooperates with ArfA to hydrolyse peptidyl-tRNAs located in the P-site of the stalled ribosome. This reaction required the GGQ (Gly-Gly-Gln) hydrolysis motif, but not the SPF (Ser-Pro-Phe) codon-recognition sequence, of RF2 and was stimulated by tRNAs. From these results we suggest that ArfA binds to the vacant A-site of the stalled ribosome with possible aid from association with a tRNA, and then recruits RF2, which hydrolyses peptidyl-tRNA in a GGQ motif-dependent but codon-independent manner. In support of this model, the ArfA-RF2 pathway did not act on the SecM-arrested ribosome, which contains an aminoacyl-tRNA in the A-site.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Hidrólisis , Modelos Biológicos
18.
PLoS One ; 6(12): e28413, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22162769

RESUMEN

Although co-translational biological processes attract much attention, no general and easy method has been available to detect cellular nascent polypeptide chains, which we propose to call collectively a "nascentome." We developed a method to selectively detect polypeptide portions of cellular polypeptidyl-tRNAs and used it to study the generality of the quality control reactions that rescue dead-end translation complexes. To detect nascent polypeptides, having their growing ends covalently attached to a tRNA, cellular extracts are separated by SDS-PAGE in two dimensions, first with the peptidyl-tRNA ester bonds preserved and subsequently after their in-gel cleavage. Pulse-labeled nascent polypeptides of Escherichia coli form a characteristic line below the main diagonal line, because each of them had contained a tRNA of nearly uniform size in the first-dimension electrophoresis but not in the second-dimension. The detection of nascent polypeptides, separately from any translation-completed polypeptides or degradation products thereof, allows us to follow their fates to gain deeper insights into protein biogenesis and quality control pathways. It was revealed that polypeptidyl-tRNAs were significantly stabilized in E. coli upon dysfunction of the tmRNA-ArfA ribosome-rescuing system, whose function had only been studied previously using model constructs. Our results suggest that E. coli cells are intrinsically producing aberrant translation products, which are normally eliminated by the ribosome-rescuing mechanisms.


Asunto(s)
Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bioquímica/métodos , Electroforesis en Gel Bidimensional/métodos , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Modelos Biológicos , Mutación , Péptidos/química , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Proteómica/métodos , ARN de Transferencia/química , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Ribosomas/metabolismo , Factores de Tiempo
19.
Genes Genet Syst ; 86(3): 151-63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21952205

RESUMEN

Ribosomes translating mRNA without an in-frame stop codon (non-stop mRNA) stall at its 3' end. In eubacteria, such ribosomes are rescued by SsrA-mediated trans-translation. Recently, we have shown that Escherichia coli ArfA (formerly YhdL) also rescues stalled ribosomes by a mechanism distinct from that of trans-translation. Synthetic lethality phenotype of ssrA arfA double mutants suggests that accumulation of stalled ribosomes is deleterious to E. coli cells. In this report, we show that the expression of ArfA is tightly regulated by the system involving trans-translation. Both premature transcription termination and specific cleavage by RNase III were programmed at the specific sites within the arfA open reading frame (ORF) and produced arfA non-stop mRNA. C-terminally truncated ArfA protein synthesized from arfA non-stop mRNA was tagged through SsrA-mediated trans-translation and degraded in wild type cell. In the absence of SsrA, however, C-terminally truncated ArfA escaped from degradation and had a function to rescue stalled ribosomes. Full-length ArfA produced only when arfA mRNA escapes from both premature transcription termination and RNase III cleavage was unstable. From these results, we illustrate a regulatory model in which ArfA is expressed only when it is needed, namely, when the ribosome rescue activity of trans-translation system is insufficient to support cell viability. This sophisticated regulatory mechanism suggests that the ArfA-mediated ribosome rescue is a backup system for trans-translation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Biológicos , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Ribosomas/fisiología , Northern Blotting , Western Blotting , Proteínas de Escherichia coli/genética , Sistemas de Lectura Abierta/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Mol Microbiol ; 80(3): 772-85, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21418110

RESUMEN

Accumulation of stalled ribosomes at the 3' end of mRNA without a stop codon (non-stop mRNA) is supposed to be toxic to bacterial cells. Escherichia coli has at least two distinct systems to rescue such stalled ribosomes: SsrA-dependent trans-translation and ArfA-dependent ribosome rescue. Combination of the ssrA and arfA mutations is synthetically lethal, suggesting the significance of ribosome rescue. In this study, we identified the E. coli yaeJ gene, encoding a peptide-release factor homologue with GGQ motif, as a multicopy suppressor of the lethal phenotype of ssrA arfA double mutant. The YaeJ protein was shown to bind to ribosomes. Both in vivo and in vitro, YaeJ showed the ribosome-rescue activity and promoted the hydrolysis of peptidyl-tRNA residing in the stalled ribosome. Missense mutation in the GGQ motif or deletion of the C-terminal unstructured tail abolished both the suppressor activity for ssrA arfA synthetic lethality and the ribosome-rescue activity, suggesting the importance of these structural features. On the basis of these observations, we propose that YaeJ acts as a stop codon-independent peptidyl-tRNA hydrolysing factor through binding to ribosomes stalled at the 3' end of non-stop mRNAs. It was also suggested that ArfA and YaeJ rescue the stalled ribosomes by distinct mechanisms.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Hidrolasas de Éster Carboxílico/genética , Proteínas de Escherichia coli/genética , Dosificación de Gen , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Unión Proteica , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...