Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38765994

RESUMEN

Upon entry into host cells, the facultative intracellular bacterium Legionella pneumophila ( L.p .) uses its type IV secretion system, Dot/Icm, to secrete ~330 bacterial effector proteins into the host cell. Some of these effectors hijack endoplasmic reticulum (ER)-derived vesicles to form the Legionella -containing vacuole (LCV). Despite extensive investigation over decades, the fundamental question persists: Is the LCV membrane distinct from or contiguous with the host ER network? Here, we employ advanced photobleaching techniques, revealing a temporal acquisition of both smooth and rough ER (sER and rER) markers on the LCV. In the early stages of infection, the sER intimately associates with the LCV. Remarkably, as the infection progresses, the LCV evolves into a distinct niche comprising an rER membrane that is independent of the host ER network. We discover that the L.p. effector LidA binds to and recruits two host proteins of the Rab superfamily, Rab10, and Rab4, that play significant roles in acquiring sER and rER membranes, respectively. Additionally, we identify the pivotal role of a host ER-resident protein, BAP31, in orchestrating the transition from sER to rER. While previously recognized for shuttling between sER and rER, we demonstrate BAP31's role as a Rab effector, mediating communication between these ER sub-compartments. Furthermore, using genomic deletion strains, we uncover a novel L.p. effector, Lpg1152, essential for recruiting BAP31 to the LCV and facilitating its transition from sER to rER. Depletion of BAP31 or infection with an isogenic L.p. strain lacking Lpg1152 results in a growth defect. Collectively, our findings illuminate the intricate interplay between molecular players from both host and pathogen, elucidating how L.p. orchestrates the transformation of its residing vacuole membrane from a host-associated sER to a distinct rER membrane that is not contiguous with the host ER network.

2.
PLoS One ; 18(9): e0283448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37773921

RESUMEN

Post translational modifications (PTMs) are exploited by various pathogens in order to escape host immune responses. SUMOylation is one of the PTMs which is involved in regulation of a variety of cellular responses. However, the effects of host SUMOylation on pathogenic bacteria largely remain elusive. We, therefore, investigated the role of SUMOylation in regulating defense responses in dendritic cells (DCs) during mycobacterial infection. Dendritic Cells of female BALB/c mice and THP-1 macrophages were used. Western blotting was performed to measure the expression of level of SUMO1, pSTAT1, pp38, pERK, Beclin-1, LC3, Bax and Cytochrome C. For bacterial burden confocal microscopy and CFU (Colony Forming Unit) were used. Flow cytometry was used for ROS and co-stimulatory molecules measurement. Cytokine level were measured using ELISA. We show that stimulation of Bone Marrow Derived Dendritic Cells (BMDCs) with mycobacterial antigen Rv3416 or live infection with Mycobacterium bovis BCG increases the SUMOylation of host proteins. Inhibition of SUMOylation significantly decreased intracellular bacterial loads in DCs. Additionally, inhibiting SUMOylation, induces protective immune responses by increasing oxidative burst, pro-inflammatory cytokine expression and surface expression of T cell co-stimulatory molecules, and activation of pSTAT1 and Mitogen Activated Protein Kinases (MAPK) proteins- pp38 and pERK. SUMOylation inhibition also increased apoptosis and autophagy in BMDCs. Intriguingly, mycobacteria increased SUMOylation of many of the above molecules. Furthermore, inhibiting SUMOylation in DCs primed T cells that in turn attenuated bacterial burden in infected macrophages. These findings demonstrate that SUMOylation pathway is exploited by mycobacteria to thwart protective host immune responses.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium bovis , Animales , Ratones , Femenino , Sumoilación , Citocinas/metabolismo , Células Dendríticas
3.
Front Cell Infect Microbiol ; 11: 748404, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595137

RESUMEN

Protozoan parasites have led to worldwide devastation because of their ability to cause infectious diseases. They have evolved as successful pathogens in part because of their remarkable and sophisticated ways to evade innate host defenses. This holds true for both intracellular and extracellular parasites that deploy multiple strategies to circumvent innate host defenses for their survival. The different strategies protozoan parasites use include hijacking the host cellular signaling pathways and transcription factors. In particular, the nuclear factor-κB (NF-κB) pathway seems to be an attractive target for different pathogens owing to their central role in regulating prompt innate immune responses in host defense. NF-κB is a ubiquitous transcription factor that plays an indispensable role not only in regulating immediate immune responses against invading pathogens but is also a critical regulator of cell proliferation and survival. The major immunomodulatory components include parasite surface and secreted proteins/enzymes and stimulation of host cells intracellular pathways and inflammatory caspases that directly or indirectly interfere with the NF-κB pathway to thwart immune responses that are directed for containment and/or elimination of the pathogen. To showcase how protozoan parasites exploits the NF-κB signaling pathway, this review highlights recent advances from Entamoeba histolytica and other protozoan parasites in contact with host cells that induce outside-in and inside-out signaling to modulate NF-κB in disease pathogenesis and survival in the host.


Asunto(s)
Entamoeba histolytica , Parásitos , Animales , Entamoeba histolytica/metabolismo , Inmunidad Innata , FN-kappa B/metabolismo , Parásitos/metabolismo , Transducción de Señal
4.
PLoS Pathog ; 17(9): e1009936, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499701

RESUMEN

While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages.


Asunto(s)
Caspasa 1/metabolismo , Proteínas Cullin/metabolismo , Entamebiasis/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Animales , Entamoeba histolytica/inmunología , Entamoeba histolytica/metabolismo , Entamebiasis/inmunología , Humanos , Ratones , Transducción de Señal/fisiología
5.
Biomol Concepts ; 12(1): 94-109, 2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34304400

RESUMEN

We previously reported that M. tb on its own as well as together with HIV inhibits macrophage apoptosis by upregulating the expression of Bcl2 and Inhibitor of Apoptosis (IAP). In addition, recent reports from our lab showed that stimulation of either macrophages or BMDCs results in the significant upregulation of Bcl2. In this report, we delineate the role of Bcl2 in mediating defense responses from dendritic cells (BMDCs) during mycobacterial infection. Inhibiting Bcl2 led to a significant decrease in intracellular bacterial burden in BMDCs. To further characterize the role of Bcl2 in modulating defense responses, we inhibited Bcl2 in BMDCs as well as human PBMCs to monitor their activation and functional status in response to mycobacterial infection and stimulation with M. tb antigen Rv3416. Inhibiting Bcl2 generated protective responses including increased expression of co-stimulatory molecules, oxidative burst, pro-inflammatory cytokine expression and autophagy. Finally, co-culturing human PBMCs and BMDCs with antigen-primed T cells increased their proliferation, activation and effector function. These results point towards a critical role for Bcl2 in regulating BMDCs defense responses to mycobacterial infection.


Asunto(s)
Células Dendríticas/inmunología , Inmunidad , Macrófagos/inmunología , Infecciones por Mycobacterium/inmunología , Mycobacterium bovis/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis , Autofagia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Células Dendríticas/patología , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Infecciones por Mycobacterium/metabolismo , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética
7.
J Leukoc Biol ; 108(3): 801-812, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32498132

RESUMEN

Intestinal amebiasis is the disease caused by the extracellular protozoan parasite Entamoeba histolytica (Eh) that induces a dynamic and heterogeneous interaction profile with the host immune system during disease pathogenesis. In 90% of asymptomatic infection, Eh resides with indigenous microbiota in the outer mucus layer of the colon without prompting an immune response. However, for reasons that remain unclear, in a minority of the Eh-infected individuals, this fine tolerated relationship is switched to a pathogenic phenotype and advanced to an increasingly complex host-parasite interaction. Eh disease susceptibility depends on parasite virulence factors and their interactions with indigenous bacteria, disruption of the mucus bilayers, and adherence to the epithelium provoking host immune cells to evoke a robust pro-inflammatory response mediated by inflammatory caspases and inflammasome activation. To understand Eh pathogenicity and innate host immune responses, this review highlights recent advances in our understanding of how Eh induces outside-in signaling via Mϕs to activate inflammatory caspases and inflammasome to regulate pro-inflammatory responses.


Asunto(s)
Disentería Amebiana/inmunología , Entamoeba histolytica/inmunología , Entamebiasis/inmunología , Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata , Inflamasomas/inmunología , Caspasas/fisiología , Proteasas de Cisteína/fisiología , Entamoeba histolytica/patogenicidad , Microbioma Gastrointestinal , Humanos , Lectinas/fisiología , Macrófagos/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Proteínas Protozoarias/fisiología , Virulencia
8.
J Leukoc Biol ; 102(5): 1249-1259, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28877954

RESUMEN

Microorganisms are known to devise various strategies to thwart protective responses by the host. One such strategy is to incorporate sequences and domains in their genes/proteins that have similarity to various domains of the host proteins. In this study, we report that Mycobacterium tuberculosis protein Rv3529c exhibits significant similarity to the death domain of the TLR pathway adaptor protein MyD88. Incubation of macrophages with Rv3529c specifically inhibited TLR2-mediated proinflammatory responses. This included attenuated oxidative burst, reduced phosphorylation of MAPK-ERK, reduced activation of transcription factor NF-κB and reduced secretion of proinflammatory cytokines IFN-γ, IL-6, and IL-17A with a concomitant increased secretion of suppressor cytokines IL-10 and TGF-ß. Importantly, Rv3529c significantly inhibited TLR2-induced association of MyD88 with IRAK1 by competitively binding with IRAK1. Further, Rv3529c mediated inhibition of apoptosis and phagosome-lysosome fusion. Lastly, incubation of macrophages with Rv3529c increased bacterial burden inside macrophages. The data presented show another strategy evolved by M. tuberculosis toward immune evasion that centers on incorporating sequences in proteins that are similar to crucial proteins in the innate immune system of the host.


Asunto(s)
Proteínas Bacterianas/farmacología , Evasión Inmune , Macrófagos/microbiología , Mycobacterium tuberculosis/inmunología , Receptor Toll-Like 2/inmunología , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Regulación de la Expresión Génica , Interferón gamma/genética , Interferón gamma/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Lisosomas/efectos de los fármacos , Lisosomas/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Fusión de Membrana/efectos de los fármacos , Fusión de Membrana/inmunología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , Imitación Molecular , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Fagosomas/efectos de los fármacos , Fagosomas/inmunología , Cultivo Primario de Células , Dominios Proteicos , Estallido Respiratorio/inmunología , Transducción de Señal , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología
9.
Tuberculosis (Edinb) ; 95(5): 599-607, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26096160

RESUMEN

Multiple strategies evolved by Mycobacterium tuberculosis (M. tb) have contributed to its successful prevalence. We previously identified specific genes in the cysteine protease and calcium-calmodulin pathways that regulated immune responses from dendritic cells (DCs). In this study we have characterized the role of neddylation in regulating various defense responses from DCs during mycobacterial infection. Neddylation is a process that is similar to ubiquitination. It however has its own enzyme machinery. It is coupled to ubiquitination and is important for maintaining cellular homeostasis. Here we show that stimulation of DCs with M. tb antigens Rv2463 and Rv3416 as well as infection with live M. tb modulates the expression levels of key proteins in the neddylation pathway. Further, stimulation with the two antigens promoted the association of NEDD8 with its target Cullin-1. The modulation in the expression levels of NEDD8 and SENtrin specific Protein 8 (SENP8) by the two antigens was in a calcium, MAPK and TLR dependent mechanism. Further, knockdown of specific genes of neddylation promoted the generation of oxidative burst, promoted phagolysosome fusion in mycobacteria infected DCs and induced higher expression of autophagy and apoptosis associated proteins in DCs. These results point toward a unique strategy employed by mycobacteria and its antigens towards immune suppression via modulating neddylation in DCs.


Asunto(s)
Células Dendríticas/metabolismo , Mycobacterium tuberculosis/patogenicidad , Procesamiento Proteico-Postraduccional , Tuberculosis/metabolismo , Ubiquitinas/metabolismo , Animales , Antígenos Bacterianos/inmunología , Apoptosis , Autofagia , Señalización del Calcio , Células Cultivadas , Proteínas Cullin/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Femenino , Interacciones Huésped-Patógeno , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mycobacterium tuberculosis/inmunología , Proteína NEDD8 , Fagocitosis , Interferencia de ARN , Estallido Respiratorio , Receptores Toll-Like/metabolismo , Transfección , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/microbiología , Ubiquitinación , Ubiquitinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...