Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Toxicol Res (Camb) ; 13(1): tfae012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38328743

RESUMEN

Background: ß-d-N4-Hydroxycytidine (NHC) is the active metabolite of molnupiravir, a broad-spectrum antiviral approved by the MHRA for COVID-19 treatment. NHC induces lethal mutagenesis of the SARS-CoV-2 virus, undergoing incorporation into the viral genome and arresting viral replication. It has previously been reported that several nucleoside analogues elicit off-target inhibition of mitochondrial DNA (mtDNA) or RNA replication. Although NHC does not exert these effects in HepG2 cells, HepaRG are proven to be advantageous over HepG2 for modelling nucleoside analogue-induced mitochondrial dysfunction. Therefore, the objective of this work was to assess the mitotoxic potential of NHC in HepaRG cells, a model more closely resembling physiological human liver. Methods: Differentiated HepaRG cells were exposed to 1-60 µM NHC for 3-14 days to investigate effects of sub-, supra-, and clinically-relevant exposures (in the UK, molnupiravir for COVID-19 is indicated for 5 days and reported Cmax is 16 µM). Following drug incubation, cell viability, mtDNA copy number, mitochondrial protein expression, and mitochondrial respiration were assessed. Results: NHC induced minor decreases in cell viability at clinically relevant exposures, but did not decrease mitochondrial protein expression. The effects on mtDNA were variable, but typically copy number was increased. At supra-clinical concentrations (60 µM), NHC reduced mitochondrial respiration, but did not appear to induce direct electron transport chain dysfunction. Conclusions: Overall, NHC does not cause direct mitochondrial toxicity in HepaRG cells at clinically relevant concentrations, but may induce minor cellular perturbations. As HepaRG cells have increased physiological relevance, these findings provide additional assurance of the mitochondrial safety profile of NHC.

2.
Clin Exp Allergy ; 54(1): 21-33, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38177093

RESUMEN

BACKGROUND: Vancomycin, a glycopeptide antibiotic used for Gram-positive bacterial infections, has been linked with drug reaction with eosinophilia and systemic symptoms (DRESS) in HLA-A*32:01-expressing individuals. This is associated with activation of T lymphocytes, for which glycolysis has been isolated as a fuel pathway following antigenic stimulation. However, the metabolic processes that underpin drug-reactive T-cell activation are currently undefined and may shed light on the energetic conditions needed for the elicitation of drug hypersensitivity or tolerogenic pathways. Here, we sought to characterise the immunological and metabolic pathways involved in drug-specific T-cell activation within the context of DRESS pathogenesis using vancomycin as model compound and drug-reactive T-cell clones (TCCs) generated from healthy donors and vancomycin-hypersensitive patients. METHODS: CD4+ and CD8+ vancomycin-responsive TCCs were generated by serial dilution. The Seahorse XFe96 Analyzer was used to measure the extracellular acidification rate (ECAR) as an indicator of glycolytic function. Additionally, T-cell proliferation and cytokine release (IFN-γ) assay were utilised to correlate the bioenergetic characteristics of T-cell activation with in vitro assays. RESULTS: Model T-cell stimulants induced non-specific T-cell activation, characterised by immediate augmentation of ECAR and rate of ATP production (JATPglyc). There was a dose-dependent and drug-specific glycolytic shift when vancomycin-reactive TCCs were exposed to the drug. Vancomycin-reactive TCCs did not exhibit T-cell cross-reactivity with structurally similar compounds within proliferative and cytokine readouts. However, cross-reactivity was observed when analysing energetic responses; TCCs with prior specificity for vancomycin were also found to exhibit glycolytic switching after exposure to teicoplanin. Glycolytic activation of TCC was HLA restricted, as exposure to HLA blockade attenuated the glycolytic induction. CONCLUSION: These studies describe the glycolytic shift of CD4+ and CD8+ T cells following vancomycin exposure. Since similar glycolytic switching is observed with teicoplanin, which did not activate T cells, it is possible the master switch for T-cell activation is located upstream of metabolic signalling.


Asunto(s)
Teicoplanina , Vancomicina , Humanos , Vancomicina/efectos adversos , Linfocitos T CD8-positivos , Activación de Linfocitos , Citocinas , Glucólisis
3.
Elife ; 122023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278519

RESUMEN

Background: Evidence supports an important link between mitochondrial DNA (mtDNA) variation and adverse drug reactions such as idiosyncratic drug-induced liver injury (iDILI). Here, we describe the generation of HepG2-derived transmitochondrial cybrids, to investigate the impact of mtDNA variation on mitochondrial (dys)function and susceptibility to iDILI. This study created 10 cybrid cell lines, each containing distinct mitochondrial genotypes of haplogroup H or haplogroup J backgrounds. Methods: HepG2 cells were depleted of mtDNA to make rho zero cells, before the introduction of known mitochondrial genotypes using platelets from healthy volunteers (n=10), thus generating 10 transmitochondrial cybrid cell lines. The mitochondrial function of each was assessed at basal state and following treatment with compounds associated with iDILI; flutamide, 2-hydroxyflutamide, and tolcapone, and their less toxic counterparts bicalutamide and entacapone utilizing ATP assays and extracellular flux analysis. Results: Whilst only slight variations in basal mitochondrial function were observed between haplogroups H and J, haplogroup-specific responses were observed to the mitotoxic drugs. Haplogroup J showed increased susceptibility to inhibition by flutamide, 2-hydroxyflutamide, and tolcapone, via effects on selected mitochondrial complexes (I and II), and an uncoupling of the respiratory chain. Conclusions: This study demonstrates that HepG2 transmitochondrial cybrids can be created to contain the mitochondrial genotype of any individual of interest. This provides a practical and reproducible system to investigate the cellular consequences of variation in the mitochondrial genome, against a constant nuclear background. Additionally, the results show that inter-individual variation in mitochondrial haplogroup may be a factor in determining sensitivity to mitochondrial toxicants. Funding: This work was supported by the Centre for Drug Safety Science supported by the Medical Research Council, United Kingdom (Grant Number G0700654); and GlaxoSmithKline as part of an MRC-CASE studentship (grant number MR/L006758/1).


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Flutamida , Humanos , Flutamida/metabolismo , Flutamida/farmacología , Tolcapona/metabolismo , Tolcapona/farmacología , Haplotipos , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Genotipo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
4.
Biomedicines ; 11(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37239154

RESUMEN

The United States Food and Drug Administration Adverse Event Reporting System (FAERS) logged 27,140 rhabdomyolysis cases from 2004 to 31 March 2020. We used FAERS to identify 14 drugs frequently reported in 6583 rhabdomyolysis cases and to investigate whether mitochondrial toxicity is a common pathway of drug-induced rhabdomyolysis by these drugs. Preliminary screening for mitochondrial toxicity was performed using the acute metabolic switch assay, which is adapted here for use in murine L6 cells. Fenofibrate, risperidone, pregabalin, propofol, and simvastatin lactone drugs were identified as mitotoxic and underwent further investigation, using real-time respirometry (Seahorse Technology) to provide more detail on the mechanism of mitochondrial-induced toxicity. To confirm the human relevance of the findings, fenofibrate and risperidone were evaluated in primary human skeletal muscle-derived cells (HSKMDC), using the acute metabolic switch assay and real-time respirometry, which confirmed this designation, although the toxic effects on the mitochondria were more pronounced in HSKMDC. Overall, these studies demonstrate that the L6 model of acute modification may find utility as an initial, cost-effective screen for identifying potential myotoxicants with relevance to humans and, importantly, that drug-induced mitochondrial dysfunction may be a common mechanism shared by some drugs that induce myotoxicity.

5.
Front Cardiovasc Med ; 9: 997013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158799

RESUMEN

Hyperglycaemia at the time of myocardial infarction has an adverse effect on prognosis irrespective of a prior diagnosis of diabetes, suggesting glucose is the damaging factor. In ex vivo models of ischaemia, we demonstrated that deleterious effects of acutely elevated glucose are PKCα/ß-dependent, and providing PKCα/ß are inhibited, elevated glucose confers cardioprotection. Short pre-treatments with high glucose were used to investigate time-dependent glucose cardiotoxicity, with PKCα/ß inhibition investigated as a potential mechanism to reverse the toxicity. Freshly isolated non-diabetic rat cardiomyocytes were exposed to elevated glucose to investigate the time-dependence toxic effects. High glucose challenge for >7.5 min was cardiotoxic, proarrhythmic and lead to contractile failure, whilst cardiomyocytes exposed to metabolic inhibition following 5-min high glucose, displayed a time-dependent protection lasting ∼15 min. This protection was further enhanced with PKCα/ß inhibition. Cardioprotection was measured as a delay in contractile failure and KATP channel activation, improved contractile and Ca2+ transient recovery and increased cell survival. Finally, the effects of pre-ischaemic treatment with high glucose in a whole-heart coronary ligation protocol, where protection was evident with PKCα/ß inhibition. Selective PKCα/ß inhibition enhances protection suggesting glycaemic control with PKC inhibition as a potential cardioprotective therapeutics in myocardial infarction and elective cardiac surgery.

6.
Biomed Pharmacother ; 150: 112999, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35461087

RESUMEN

SLC2A1 mediates glucose cellular uptake; key to appropriate immune function. Our previous work has shown efavirenz and lopinavir exposure inhibits T cell and macrophage responses, to known agonists, likely via interactions with glucose transporters. Using human cell lines as a model, we assessed glucose uptake and subsequent bioenergetic profiles, linked to immunological responses. Glucose uptake was measured using 2-deoxyglucose as a surrogate for endogenous glucose, using commercially available reagents. mRNA expression of SLC transporters was investigated using qPCR TaqMan™ gene expression assay. Bioenergetic assessment, on THP-1 cells, utilised the Agilent Seahorse XF Mito Stress test. In silico analysis of potential interactions between SLC2A1 and antiretrovirals was investigated using bioinformatic techniques. Efavirenz and lopinavir exposure was associated with significantly lower glucose accumulation, most notably in THP-1 cells (up to 90% lower and 70% lower with efavirenz and lopinavir, respectively). Bioenergetic assessment showed differences in the rate of ATP production (JATP); efavirenz (4 µg/mL), was shown to reduce JATP by 87% whereas lopinavir (10 µg/mL), was shown to increase the overall JATP by 77%. Putative in silico analysis indicated the antiretrovirals, apart from efavirenz, associated with the binding site of highest binding affinity to SLC2A1, similar to that of glucose. Our data suggest a role for efavirenz and lopinavir in the alteration of glucose accumulation with subsequent alteration of bioenergetic profiles, supporting our hypothesis for their inhibitory effect on immune cell activation. Clarification of the implications of this data, for in vivo immunological responses, is now warranted to define possible consequences for these, and similar, therapeutics.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Adenosina Trifosfato , Alquinos/uso terapéutico , Fármacos Anti-VIH/farmacología , Benzoxazinas/farmacología , Ciclopropanos , Metabolismo Energético , Glucosa/uso terapéutico , Transportador de Glucosa de Tipo 1/genética , Infecciones por VIH/tratamiento farmacológico , Humanos , Lopinavir/farmacología , Ritonavir
7.
Front Genet ; 12: 698825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484295

RESUMEN

Background: The triad of drug efficacy, toxicity and resistance underpins the risk-benefit balance of all therapeutics. The application of pharmacogenomics has the potential to improve the risk-benefit balance of a given therapeutic via the stratification of patient populations based on DNA variants. A growth in the understanding of the particulars of the mitochondrial genome, alongside the availability of techniques for its interrogation has resulted in a growing body of literature examining the impact of mitochondrial DNA (mtDNA) variation upon drug response. Objective: To critically evaluate and summarize the available literature, across a defined period, in a systematic fashion in order to map out the current landscape of the subject area and identify how the field may continue to advance. Methods: A systematic review of the literature published between January 2009 and December 2020 was conducted using the PubMed database with the following key inclusion criteria: reference to specific mtDNA polymorphisms or haplogroups, a core objective to examine associations between mtDNA variants and drug response, and research performed using human subjects or human in vitro models. Results: Review of the literature identified 24 articles reporting an investigation of the association between mtDNA variant(s) and drug efficacy, toxicity or resistance that met the key inclusion criteria. This included 10 articles examining mtDNA variations associated with antiretroviral therapy response, 4 articles examining mtDNA variants associated with anticancer agent response and 4 articles examining mtDNA variants associated with antimicrobial agent response. The remaining articles covered a wide breadth of medications and were therefore grouped together and referred to as "other." Conclusions: Investigation of the impact of mtDNA variation upon drug response has been sporadic to-date. Collective assessment of the associations identified in the articles was inconclusive due to heterogeneous methods and outcomes, limited racial/ethnic groups, lack of replication and inadequate statistical power. There remains a high degree of idiosyncrasy in drug response and this area has the potential to explain variation in drug response in a clinical setting, therefore further research is likely to be of clinical benefit.

8.
Arch Toxicol ; 95(4): 1335-1347, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33585966

RESUMEN

Mitochondrial DNA (mtDNA) is highly polymorphic and encodes 13 proteins which are critical to the production of ATP via oxidative phosphorylation. As mtDNA is maternally inherited and undergoes negligible recombination, acquired mutations have subdivided the human population into several discrete haplogroups. Mitochondrial haplogroup has been found to significantly alter mitochondrial function and impact susceptibility to adverse drug reactions. Despite these findings, there are currently limited models to assess the effect of mtDNA variation upon susceptibility to adverse drug reactions. Platelets offer a potential personalised model of this variation, as their anucleate nature offers a source of mtDNA without interference from the nuclear genome. This study, therefore, aimed to determine the effect of mtDNA variation upon mitochondrial function and drug-induced mitochondrial dysfunction in a platelet model. The mtDNA haplogroup of 383 healthy volunteers was determined using next-generation mtDNA sequencing (Illumina MiSeq). Subsequently, 30 of these volunteers from mitochondrial haplogroups H, J, T and U were recalled to donate fresh, whole blood from which platelets were isolated. Platelet mitochondrial function was tested at basal state and upon treatment with compounds associated with both mitochondrial dysfunction and adverse drug reactions, flutamide, 2-hydroxyflutamide and tolcapone (10-250 µM) using extracellular flux analysis. This study has demonstrated that freshly-isolated platelets are a practical, primary cell model, which is amenable to the study of drug-induced mitochondrial dysfunction. Specifically, platelets from donors of haplogroup J have been found to have increased susceptibility to the inhibition of complex I-driven respiration by 2-hydroxyflutamide. At a time when individual susceptibility to adverse drug reactions is not fully understood, this study provides evidence that inter-individual variation in mitochondrial genotype could be a factor in determining sensitivity to mitochondrial toxicants associated with costly adverse drug reactions.


Asunto(s)
Plaquetas/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , Flutamida/análogos & derivados , Tolcapona/toxicidad , Adolescente , Adulto , ADN Mitocondrial/genética , Femenino , Flutamida/toxicidad , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Toxicol In Vitro ; 72: 105096, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33460737

RESUMEN

Inhibition of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzymatic step in de novo pyrimidine synthesis, has broad immunosuppressive effects in vivo and shows promise as a therapeutic target for the treatment of malignancies, viral infections and auto-immune diseases. Whilst there are numerous DHODH inhibitors under development, leflunomide and teriflunomide are the only FDA approved compounds on the market, each of which have been issued with black-box warnings for hepatotoxicity. Mitochondrial dysfunction is a putative mechanism by which teriflunomide and leflunomide elicit their hepatotoxic effects, however it is as yet unclear whether this is shared by other nascent DHODH inhibitors. The present study aimed to evaluate the propensity for DHODH inhibitors to mediate mitochondrial dysfunction in two hepatic in vitro models. Initial comparisons of cytotoxicity and ATP content in HepaRG® cells primed for oxidative metabolism, in tandem with mechanistic evaluations by extracellular flux analysis identified multifactorial toxicity and moderate indications of respiratory chain dysfunction or uncoupling. Further investigations using HepG2 cells, a hepatic line with limited capability for phase I xenobiotic metabolism, identified leflunomide and brequinar as positive mitochondrial toxicants. Taken together, biotransformation of some DHODH inhibitor species may play a role in mediating or masking hepatic mitochondrial liabilities.


Asunto(s)
Antineoplásicos/toxicidad , Inmunosupresores/toxicidad , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Compuestos de Bifenilo/toxicidad , Línea Celular , Respiración de la Célula/efectos de los fármacos , Crotonatos/toxicidad , Ácidos Dicarboxílicos/toxicidad , Dihidroorotato Deshidrogenasa , Humanos , Hidroxibutiratos/toxicidad , Leflunamida/toxicidad , Hígado/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Nitrilos/toxicidad , Salicilanilidas/toxicidad , Toluidinas/toxicidad , Triazoles/toxicidad
10.
Br J Pharmacol ; 177(19): 4353-4374, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32681537

RESUMEN

Intense efforts are underway to evaluate potential therapeutic agents for the treatment of COVID-19. In order to respond quickly to the crisis, the repurposing of existing drugs is the primary pharmacological strategy. Despite the urgent clinical need for these therapies, it is imperative to consider potential safety issues. This is important due to the harm-benefit ratios that may be encountered when treating COVID-19, which can depend on the stage of the disease, when therapy is administered and underlying clinical factors in individual patients. Treatments are currently being trialled for a range of scenarios from prophylaxis (where benefit must greatly exceed risk) to severe life-threatening disease (where a degree of potential risk may be tolerated if it is exceeded by the potential benefit). In this perspective, we have reviewed some of the most widely researched repurposed agents in order to identify potential safety considerations using existing information in the context of COVID-19.


Asunto(s)
Antivirales/efectos adversos , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Humanos , Pandemias , Medición de Riesgo , Seguridad
11.
Toxicol Appl Pharmacol ; 403: 115163, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32730777

RESUMEN

During its clinical development fialuridine caused liver toxicity and the death of five patients. This case remains relevant due to the continued development of mechanistically-related compounds against a back-drop of simple in vitro models which remain limited for the preclinical detection of such delayed toxicity. Here, proteomic investigation of a differentiated, HepaRG, and proliferating, HepG2 cell model was utilised to confirm the presence of the hENT1 transporter, thymidine kinase-1 and -2 (TK1, TK2) and thymidylate kinase, all essential in order to reproduce the cellular activation and disposition of fialuridine in the clinic. Acute metabolic modification assays could only identify mitochondrial toxicity in HepaRG cells following extended dosing, 2 weeks. Toxic effects were observed around 10 µM, which is within a range of 10-15 X approximate Cmax. HepaRG cell death was accompanied by a significant decrease in mitochondrial DNA content, indicative of inhibition of mitochondrial replication, and a subsequent reduction in mitochondrial respiration and the activity of mitochondrial respiratory complexes, not replicated in HepG2 cells. The structural epimer of fialuridine, included as a pharmacological negative control, was shown to have no cytotoxic effects in HepaRG cells up to 4 weeks. Overall, these comparative studies demonstrate the HepaRG model has translational relevance for fialuridine toxicity and therefore may have potential in investigating the inhibition of mitochondrial replication over prolonged exposure for other toxicants.


Asunto(s)
Antivirales/farmacología , Arabinofuranosil Uracilo/análogos & derivados , Hepatocitos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Arabinofuranosil Uracilo/farmacología , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Mitocondrias/fisiología
12.
Elife ; 92020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32583799

RESUMEN

A structural motif that is found in two cancer drugs may be responsible for their ability to tackle cancers and for the side-effects caused by the drugs.


Asunto(s)
Antineoplásicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Complejo I de Transporte de Electrón , Humanos , Mitocondrias
13.
Biochem Soc Trans ; 48(3): 787-797, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32453388

RESUMEN

The mitochondrion is an essential organelle responsible for generating cellular energy. Additionally, mitochondria are a source of inter-individual variation as they contain their own genome. Evidence has revealed that mitochondrial DNA (mtDNA) variation can confer differences in mitochondrial function and importantly, these differences may be a factor underlying the idiosyncrasies associated with unpredictable drug-induced toxicities. Thus far, preclinical and clinical data are limited but have revealed evidence in support of an association between mitochondrial haplogroup and susceptibility to specific adverse drug reactions. In particular, clinical studies have reported associations between mitochondrial haplogroup and antiretroviral therapy, chemotherapy and antibiotic-induced toxicity, although study limitations and conflicting findings mean that the importance of mtDNA variation to toxicity remains unclear. Several studies have used transmitochondrial cybrid cells as personalised models with which to study the impact of mitochondrial genetic variation. Cybrids allow the effects of mtDNA to be assessed against a stable nuclear background and thus the in vitro elucidation of the fundamental mechanistic basis of such differences. Overall, the current evidence supports the tenet that mitochondrial genetics represent an exciting area within the field of personalised medicine and drug toxicity. However, further research effort is required to confirm its importance. In particular, efforts should focus upon translational research to connect preclinical and clinical data that can inform whether mitochondrial genetics can be useful to identify at risk individuals or inform risk assessment during drug development.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Genotipo , Mitocondrias/genética , Animales , Antibacterianos/toxicidad , Antirretrovirales/toxicidad , Antineoplásicos/toxicidad , Núcleo Celular , ADN Mitocondrial/genética , Desarrollo de Medicamentos , Variación Genética , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple
14.
Nat Rev Drug Discov ; 19(2): 131-148, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31748707

RESUMEN

Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Modelos Animales de Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Valor Predictivo de las Pruebas
15.
Toxicol In Vitro ; 61: 104595, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31288073

RESUMEN

Bile acids (BAs) are recognised as the causative agents of toxicity in drug-induced cholestasis (DIC). Research in isolated mitochondria and HepG2 cells have demonstrated BA-mediated mitochondrial dysfunction as a key mechanism of toxicity in DIC. However, HepG2 cells are of limited suitability for DIC studies as they do not express the necessary physiological characteristics. In this study, the mitotoxic potentials of BA mixtures were assessed in isolated mitochondria and a better-suited hepatic model, HepaRG cells. BAs induced structural alterations and a loss of mitochondrial membrane potential (MMP) in isolated mitochondria however, this toxicity did not translate to HepaRG cells. There were no changes in oxygen consumption rate, MMP or ATP levels in glucose and galactose media, indicating that there was no direct mitochondrial toxicity mediated via electron transport chain dysfunction in HepaRG cells. Assessment of key biliary transporters revealed that there was a time-dependent reduction in the expression and activity of multi-drug resistance protein 2 (MRP2), which was consistent with the induction of cytotoxicity in HepaRG cells. Overall, the findings from this study have demonstrated that mitochondrial dysfunction is not a mechanism of BA-induced toxicity in HepaRG cells.


Asunto(s)
Ácidos y Sales Biliares/toxicidad , Mitocondrias/efectos de los fármacos , Línea Celular , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
16.
Curr Protoc Toxicol ; 80(1): e76, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31058461

RESUMEN

Using galactose instead of glucose in the culture medium of hepatoma cell lines, such as HepG2 cells, has been utilized for a decade to unmask the mitochondrial liability of chemical compounds. A modified glucose-galactose assay on HepG2 cells, reducing the experimental period for screening of mitochondrial toxicity to 2 to 4 hr, has been previously reported. HepaRG cells are one of the few cell lines that retain some of the important characteristics of human hepatocytes, offering advantages of working with a cell line, therefore, are considered an alternative for HepG2 cells in drug toxicity screening. A method is described here using HepaRG cells in an acute metabolic switch assay utilizing specific glucose/galactose media, a combined ATP-protein-LDH assay measuring three endpoints from one 96-well plate, and a criteria to label a compound as a mitochondrial toxin. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Medios de Cultivo/química , Galactosa/metabolismo , Glucosa/metabolismo , Hepatocitos/efectos de los fármacos , Mitocondrias Hepáticas , Bioensayo , Línea Celular , Hepatocitos/metabolismo , Humanos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo
17.
Sci Rep ; 9(1): 6333, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31004119

RESUMEN

Redox cycling is an understated mechanism of toxicity associated with a plethora of xenobiotics, responsible for preventing the effective treatment of serious conditions such as malaria and cardiomyopathy. Quinone compounds are notorious redox cyclers, present in drugs such as doxorubicin, which is used to treat a host of human cancers. However, the therapeutic index of doxorubicin is undermined by dose-dependent cardiotoxicity, which may be a function of futile redox cycling. In this study, a doxorubicin-specific in silico quinone redox metabolism model is described. Doxorubicin-GSH adduct formation kinetics are thermodynamically estimated from its reduction potential, while the remainder of the model is parameterised using oxygen consumption rate data, indicative of hydroquinone auto-oxidation. The model is then combined with a comprehensive glutathione metabolism model, facilitating the simulation of quinone redox cycling, and adduct-induced GSH depletion. Simulations suggest that glutathione pools are most sensitive to exposure duration at pharmacologically and supra-pharmacologically relevant doxorubicin concentrations. The model provides an alternative method of investigating and quantifying redox cycling induced oxidative stress, circumventing the experimental difficulties of measuring and tracking radical species. This in silico framework provides a platform from which GSH depletion can be explored as a function of a compound's physicochemical properties.


Asunto(s)
Benzoquinonas/metabolismo , Glutatión/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Oxidación-Reducción
18.
Monoclon Antib Immunodiagn Immunother ; 38(2): 60-69, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31009338

RESUMEN

CD28 superagonist (CD28SA), a therapeutic immunomodulatory monoclonal antibody triggered rapid and exaggerated activation of CD4+ effector memory T cells (TEMs) in humans with unwanted serious adverse effects. It is well known that distinct metabolic programs determine the fate and responses of immune cells. In this study, we show that human CD4+ TEMs stimulated with CD28SA adopt a metabolic program similar to those of tumor cells with enhanced glucose utilization, lipid biosynthesis, and proliferation in hypoxic conditions. Identification of metabolic profiles underlying hyperactive T cell activation would provide a platform to test safety of immunostimulatory antibodies.


Asunto(s)
Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/inmunología , Glucólisis/inmunología , Lipogénesis/inmunología , Activación de Linfocitos/inmunología , Neoplasias/metabolismo , Acetilcoenzima A/metabolismo , Anticuerpos Monoclonales/inmunología , Antígenos CD28/metabolismo , Proliferación Celular , Glucosa/metabolismo , Humanos , Memoria Inmunológica , Neoplasias/inmunología , Neoplasias/patología , Proteínas Quinasas/metabolismo , Linfocitos T Reguladores/inmunología , Células Tumorales Cultivadas
19.
PLoS One ; 13(11): e0207803, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30496306

RESUMEN

Cancer cells depend on glucose metabolism via glycolysis as a primary energy source, despite the presence of oxygen and fully functioning mitochondria, in order to promote growth, proliferation and longevity. Glycolysis relies upon NAD+ to accept electrons in the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction, linking the redox state of the cytosolic NAD+ pool to glycolytic rate. The free cytosolic NAD+/NADH ratio is involved in over 700 oxidoreductive enzymatic reactions and as such, the NAD+/NADH ratio is regarded as a metabolic readout of overall cellular redox state. Many experimental techniques that monitor or measure total NAD+ and NADH are unable to distinguish between protein-bound and unbound forms. Yet total NAD+/NADH measurements yield little information, since it is the free forms of NAD+ and NADH that determine the kinetic and thermodynamic influence of redox potential on glycolytic rate. Indirect estimations of free NAD+/NADH are based on the lactate/pyruvate (L/P) ratio at chemical equilibrium, but these measurements are often undermined by high lability. To elucidate the sensitivity of the free NAD+/NADH ratio to changes in extracellular substrate, an in silico model of hepatocarcinoma glycolysis was constructed and validated against in vitro data. Model simulations reveal that over experimentally relevant concentrations, changes in extracellular glucose and lactate concentration during routine cancer cell culture can lead to significant deviations in the NAD+/NADH ratio. Based on the principles of chemical equilibrium, the model provides a platform from which experimentally challenging situations may be examined, suggesting that extracellular substrates play an important role in cellular redox and bioenergetic homeostasis.


Asunto(s)
Citosol/metabolismo , Espacio Extracelular/metabolismo , Modelos Biológicos , NAD/metabolismo , Adenosina Trifosfato/metabolismo , Citoplasma/metabolismo , Metabolismo Energético , Glucólisis , Ácido Láctico/metabolismo , Análisis de Flujos Metabólicos
20.
PLoS Negl Trop Dis ; 12(9): e0006841, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30260961

RESUMEN

BACKGROUND: Chagas disease (CD) is a life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by triatomine bugs. Triatomine bugs inhabit poorly constructed homes that create multiple hiding spots for the bugs. Modifying the actual structure of a home, along with the homeowners' practices, can reduce triatomine infestation. This research was designed to collect culturally-relevant information to develop a health campaign to decrease risk of CD transmission by promoting home maintenance and better hygiene in rural communities of southern Ecuador. METHODS AND MAIN FINDINGS: The Health Belief Model (HBM) guided focus group discussions and the interpretation of the results. Four focus groups ranging from 4 to 10 participants were conducted between May and June 2014 in three communities of Loja province in Southern Ecuador. A thematic analysis was used to identify within the data related to perceptions of susceptibility, severity, benefits, barriers and self-efficacy related to CD and its prevention. The results provide clear guidance for the development of Chagas-prevention messages. CONCLUSION: Data obtained emphasize the importance of standardizing messages presented to the communities for CD prevention. Messages should provide more information on the protective nature of the behaviors promoted for CD prevention; overcoming barriers such as cost and convenience, and build on facilitating factors, including community members' interest on quality of life, protection of their families, and relationship with the land.


Asunto(s)
Enfermedad de Chagas/prevención & control , Control de Enfermedades Transmisibles/métodos , Transmisión de Enfermedad Infecciosa/prevención & control , Comunicación en Salud/métodos , Conocimientos, Actitudes y Práctica en Salud , Higiene/educación , Triatominae/crecimiento & desarrollo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Ecuador , Femenino , Grupos Focales , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...