Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Probiotics Antimicrob Proteins ; 16(2): 541-551, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37002419

RESUMEN

Postmenopausal osteoporosis is caused by estrogen deficiency, which impairs bone homeostasis, resulting in increased osteoclastic resorption without a corresponding increase in osteoblastic activity. Postbiotics have several therapeutic properties, including anti-obesity, anti-diabetic, anti-inflammatory, and anti-osteoporotic effects. However, the beneficial effects of the postbiotic MD35 of Lactobacillus plantarum on bone have not been studied. In this study, we demonstrated that the postbiotic L. plantarum MD35, isolated from young radish water kimchi, influences osteoclast differentiation in mouse bone marrow-derived macrophage (BMM) culture. In addition, it was effective protecting against estrogen deficiency-induced bone loss in ovariectomized (OVX) mice, an animal model of postmenopausal osteoporosis. In BMM cells, postbiotic MD35 inhibited the receptor activator of nuclear factor-kappa B of NF-κB ligand (RANKL)-induced osteoclast differentiation by attenuating the phosphorylation of extracellular signal-related kinase, significantly suppressing the resorption activity and down-regulating the expression of RANKL-mediated osteoclast-related genes. In the animal model, the oral administration of postbiotic MD35 remarkably improved OVX-induced trabecular bone loss and alleviated the destruction of femoral plate growth. Therefore, postbiotic MD35 could be a potential therapeutic candidate for postmenopausal osteoporosis by suppressing osteoclastogenesis through the regulation of osteoclast-related molecular mechanisms.


Asunto(s)
Lactobacillus plantarum , Osteoporosis Posmenopáusica , Humanos , Femenino , Ratones , Animales , Osteoporosis Posmenopáusica/metabolismo , Lactobacillus plantarum/metabolismo , Diferenciación Celular , Osteoclastos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Estrógenos/metabolismo , Estrógenos/farmacología
2.
Genes Brain Behav ; 18(5): e12545, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30675754

RESUMEN

The mechanosensory neurons of Drosophila larvae are demonstrably activated by diverse mechanical stimuli, but the mechanisms underlying this function are not completely understood. Here we report a genetic, immunohistochemical, and electrophysiological analysis of the Ppk30 ion channel, a member of the Drosophila pickpocket (ppk) family, counterpart of the mammalian Degenerin/Epithelial Na+ Channel family. Ppk30 mutant larvae displayed deficits in proprioceptive movement and mechanical nociception, which are detected by class IV sensory (mdIV) neurons. The same neurons also detect heat nociception, which was not impaired in ppk30 mutant larvae. Similarly, Ppk30 mutation did not alter gentle touch mechanosensation, a distinct mechanosensation detected by other neurons, suggesting that Ppk30 has a functional role in mechanosensation in mdIV neurons. Consistently, Ppk30 was expressed in class IV neurons, but was not detectable in other larval skin sensory neurons. Mutant phenotypes were rescued by expressing Ppk30 in mdIV neurons. Electrophysiological analysis of heterologous cells expressing Ppk30 did not detect mechanosensitive channel activities, but did detect acid-induced currents. These data show that Ppk30 has a role in mechanosensation, but not in thermosensation, in class IV neurons, and possibly has other functions related to acid response.


Asunto(s)
Proteínas de Drosophila/genética , Nocicepción , Propiocepción , Canales de Sodio/genética , Potenciales de Acción , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiología , Canales de Sodio/metabolismo
3.
Nat Commun ; 8(1): 1630, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29158481

RESUMEN

Upon mating, fruit fly females become refractory to further mating for several days. An ejaculate protein called sex peptide (SP) acts on uterine neurons to trigger this behavioural change, but it is still unclear how the SP signal modifies the mating decision. Here we describe two groups of female-specific local interneurons that are important for this process-the ventral abdominal lateral (vAL) and ventral abdominal medial (vAM) interneurons. Both vAL and vAM express myoinhibitory peptide (Mip)-GAL4. vAL is positive for Mip neuropeptides and the sex-determining transcriptional factor doublesex. Silencing the Mip neurons in females induces active rejection of male courtship attempts, whereas activation of the Mip neurons makes even mated females receptive to re-mating. vAL and vAM are located in the abdominal ganglion (AG) where they relay the SP signal to other AG neurons that project to the brain. Mip neuropeptides appear to promote mating receptivity both in virgins and mated females, although it is dispensable for normal mating in virgin females.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Interneuronas/metabolismo , Conducta Sexual Animal , Animales , Cortejo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Ganglión/genética , Ganglión/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Masculino , Péptidos/metabolismo
4.
Curr Biol ; 26(6): 814-20, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26948873

RESUMEN

Although several neural pathways have been implicated in feeding behaviors in mammals [1-7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Respuesta de Saciedad/fisiología , Animales , Animales Modificados Genéticamente , Peso Corporal , Encéfalo/fisiología , Proteínas de Drosophila/genética , Ingestión de Alimentos , Conducta Alimentaria , Femenino , Regulación de la Expresión Génica , Canales Iónicos , Masculino , Neuronas/metabolismo , Péptidos/metabolismo , Receptores de Péptidos , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/metabolismo
5.
PLoS Biol ; 12(10): e1001974, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25333796

RESUMEN

Sleep, a reversible quiescent state found in both invertebrate and vertebrate animals, disconnects animals from their environment and is highly regulated for coordination with wakeful activities, such as reproduction. The fruit fly, Drosophila melanogaster, has proven to be a valuable model for studying the regulation of sleep by circadian clock and homeostatic mechanisms. Here, we demonstrate that the sex peptide receptor (SPR) of Drosophila, known for its role in female reproduction, is also important in stabilizing sleep in both males and females. Mutants lacking either the SPR or its central ligand, myoinhibitory peptide (MIP), fall asleep normally, but have difficulty in maintaining a sleep-like state. Our analyses have mapped the SPR sleep function to pigment dispersing factor (pdf) neurons, an arousal center in the insect brain. MIP downregulates intracellular cAMP levels in pdf neurons through the SPR. MIP is released centrally before and during night-time sleep, when the sleep drive is elevated. Sleep deprivation during the night facilitates MIP secretion from specific brain neurons innervating pdf neurons. Moreover, flies lacking either SPR or MIP cannot recover sleep after the night-time sleep deprivation. These results delineate a central neuropeptide circuit that stabilizes the sleep state by feeding a slow-acting inhibitory input into the arousal system and plays an important role in sleep homeostasis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Péptidos/metabolismo , Sueño/fisiología , Animales , Encéfalo/metabolismo , AMP Cíclico/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/genética , Femenino , Técnicas de Silenciamiento del Gen , Homeostasis , Masculino , Neuronas/metabolismo , Péptidos/genética , Receptores de Péptidos
6.
FEBS Lett ; 588(12): 2037-41, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24796791

RESUMEN

To identify ligands for orphan GPCRs, we searched novel neuropeptide genes in the Drosophila melanogaster genome. Here, we describe CNMa, a novel cyclic neuropeptide that is a highly potent and selective agonist for the orphan GPCR, CG33696 (CNMaR). Phylogenetic analysis revealed that arthropod species have two paralogous CNMaRs, but many taxa retain only one. Drosophila CNMa potently activates CNMaR-2 from Apis mellifera, suggesting both receptors are functional. Although CNMa is conserved in most arthropods, Lepidoptera lack the CNMa gene. However, they retain the CNMaR gene. Bombyx CNMaR showed low sensitivity to Drosophila CNMa, hinting toward the existence of additional CNMaR ligand(s).


Asunto(s)
Proteínas de Drosophila/metabolismo , Neuropéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Evolución Molecular , Ligandos , Datos de Secuencia Molecular , Neuronas/metabolismo , Neuropéptidos/química , Filogenia , Receptores de Neuropéptido/química
7.
Proc Natl Acad Sci U S A ; 110(37): E3526-34, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23980168

RESUMEN

An arthropod-specific peptidergic system, the neuropeptide designated here as natalisin and its receptor, was identified and investigated in three holometabolous insect species: Drosophila melanogaster, Tribolium castaneum, and Bombyx mori. In all three species, natalisin expression was observed in 3-4 pairs of the brain neurons: the anterior dorso-lateral interneurons, inferior contralateral interneurons, and small pars intercerebralis neurons. In B. mori, natalisin also was expressed in two additional pairs of contralateral interneurons in the subesophageal ganglion. Natalisin-RNAi and the activation or silencing of the neural activities in the natalisin-specific cells in D. melanogaster induced significant defects in the mating behaviors of both males and females. Knockdown of natalisin expression in T. castaneum resulted in significant reduction in the fecundity. The similarity of the natalisin C-terminal motifs to those of vertebrate tachykinins and of tachykinin-related peptides in arthropods led us to identify the natalisin receptor. A G protein-coupled receptor, previously known as tachykinin receptor 86C (also known as the neurokinin K receptor of D. melanogaster), now has been recognized as a bona fide natalisin receptor. Taken together, the taxonomic distribution pattern of the natalisin gene and the phylogeny of the receptor suggest that natalisin is an ancestral sibling of tachykinin that evolved only in the arthropod lineage.


Asunto(s)
Proteínas de Drosophila/fisiología , Fertilidad/fisiología , Proteínas de Insectos/fisiología , Insectos/fisiología , Neuropéptidos/fisiología , Conducta Sexual Animal/fisiología , Taquicininas/fisiología , Secuencia de Aminoácidos , Animales , Bombyx/genética , Bombyx/fisiología , Encéfalo/citología , Encéfalo/metabolismo , Secuencia Conservada , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Fertilidad/genética , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Insectos/genética , Interneuronas/metabolismo , Masculino , Datos de Secuencia Molecular , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/genética , Filogenia , Interferencia de ARN , Receptores de Taquicininas/genética , Receptores de Taquicininas/fisiología , Transducción de Señal , Taquicininas/antagonistas & inhibidores , Taquicininas/genética , Tribolium/genética , Tribolium/fisiología
8.
PLoS Genet ; 8(4): e1002631, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509142

RESUMEN

To gain insight into the molecular genetic basis of standing variation in fitness related traits, we identify a novel factor that regulates the molecular and physiological basis of natural variation in female Drosophila melanogaster fecundity. Genetic variation in female fecundity in flies derived from a wild orchard population is heritable and largely independent of other measured life history traits. We map a portion of this variation to a single QTL and then use deficiency mapping to further refine this QTL to 5 candidate genes. Ubiquitous expression of RNAi against only one of these genes, an aquaporin encoded by Drip, reduces fecundity. Within our mapping population Drip mRNA level in the head, but not other tissues, is positively correlated with fecundity. We localize Drip expression to a small population of corazonin producing neurons located in the dorsolateral posterior compartments of the protocerebrum. Expression of Drip-RNAi using both the pan-neuronal ELAV-Gal4 and the Crz-Gal4 drivers reduces fecundity. Low-fecundity RILs have decreased Crz expression and increased expression of pale, the enzyme encoding the rate-limiting step in the production of dopamine, a modulator of insect life histories. Taken together these data suggest that natural variation in Drip expression in the corazonin producing neurons contributes to standing variation in fitness by altering the concentration of two neurohormones.


Asunto(s)
Acuaporinas/genética , Drosophila melanogaster , Fertilidad/genética , Aptitud Genética , Neuronas , Animales , Acuaporinas/metabolismo , Mapeo Cromosómico , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Aptitud Genética/genética , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sitios de Carácter Cuantitativo/genética , Interferencia de ARN , ARN Mensajero/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA