Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Hand (N Y) ; : 15589447241242830, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606949

RESUMEN

BACKGROUND: Clinically recognizing the changes in carpal bone volumes and understanding their implications in predicting osteoarthritis (OA) is crucial in clinical practice This study aimed to explore age-related differences in carpal bone volumes across genders, leveraging computed tomography (CT) wrist scans to create 3D surface models of these bones. METHODS: Carpal bone volumes were calculated using the 3D Slicer software from CT scans obtained from Frankston Hospital and additional datasets from Brown and Auckland Universities. The data were statistically processed using Stata V13. Double-sided P-values < .05 were considered statistically significant. The study was conducted in accordance with the ethical standards laid out in the Declaration of Helsinki. RESULTS: A total of 181 patients were analyzed, and 48% of whom were female. A statistically significant positive Spearman correlation (rho = 0.37-0.611, P <.05) was observed between increasing age and the volume of all surveyed carpal bones (scaphoid, lunate, triquetrum, pisiform, hamate, capitate, and trapezium) across genders. Intrauser and interuser reliabilities for 3D Slicer-generated volumes of trapezium and pisiform bones were statistically significant, with Interclass Correlation Coefficient (ICC) values of 0.86 and 0.95, respectively. CONCLUSION: Trapezial volumes increase with age, potentially due to the presence of OA and consequent osteophyte formation. This pattern is more prevalent among older individuals and women. However, the positive correlation between carpal bone volume and age was consistent across all carpal bones and both genders, regardless of OA presence. These findings suggest that carpal bone volume may naturally increase with age, independent of OA-related changes. LEVEL OF EVIDENCE: III, cohort study.

2.
Bioengineered ; 14(1): 2250950, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37655550

RESUMEN

Bioethanol is a renewable fuel widely used in road transportation and is generally regarded as a clean energy source. Although fermentation is one of the major processes in bioethanol production, studies on improving its efficiency through operational design are limited, especially compared to other steps (pretreatment and hydrolysis/saccharification). In this study, two adapted feeding strategies, in which feed medium addition (sugar delivery) was adjusted to increase the supply of fermentable sugar, were developed to improve ethanol productivity in 5-L fed-batch fermentation by Saccharomyces cerevisiae. Specifically, a linear adapted feeding strategy was established based on changes in cell biomass, and an exponential adapted feeding strategy was developed based on cell biomass accumulation. By implementing these two feeding strategies, the overall ethanol productivity reached 0.88±0.04 and 0.87±0.06 g/L/h, respectively. This corresponded to ~20% increases in ethanol productivity compared to fixed pulsed feeding operations. Additionally, there was no residual glucose at the end of fermentation, and final ethanol content reached 95±3 g/L under the linear adapted operation and 104±3 g/L under the exponential adapted feeding strategy. No statistical difference was observed in the overall ethanol yield (ethanol-to-sugar ratio) between fixed and adapted feeding strategies (~91%). These results demonstrate that sugar delivery controlled by adapted feeding strategies was more efficient than fixed feeding operations, leading to higher ethanol productivity. Overall, this study provides novel adapted feeding strategies to improve sugar delivery and ethanol productivity. Integration into the current practices of the ethanol industry could improve productivity and reduce production costs of fermentation processes.


Asunto(s)
Glucosa , Azúcares , Fermentación , Alcoholes del Azúcar , Etanol , Saccharomyces cerevisiae
3.
J Hazard Mater ; 453: 131339, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37058938

RESUMEN

Strict bans on specific risk materials (SRMs) are in place to prevent the spread of bovine spongiform encephalopathy (BSE). SRMs are characterized as tissues in cattle where misfolded proteins, the potential source of BSE infection, are concentrated. As a result of these bans, SRMs must be strictly isolated and disposed of, resulting in great costs for rendering companies. The increasing yield and the landfill of SRMs also exacerbated the burden on the environment. To cope with the emergence of SRMs, novel disposal methods and feasible value-added conversion routes are needed. The focus of this review is on the valorization progress achieved in the conversion of peptides derived from SRMs via an alternative disposal method, thermal hydrolysis. Promising value-added conversion of SRM-derived peptides into tackifiers, wood adhesives, flocculants, and bioplastics, is introduced. The potential conjugation strategies that can be adapted to SRM-derived peptides for desired properties are also critically reviewed. The purpose of this review is to discover a technical platform through which other hazardous proteinaceous waste, SRMs, can be treated as a high-demand feedstock for the production of renewable materials.


Asunto(s)
Encefalopatía Espongiforme Bovina , Animales , Bovinos , Encefalopatía Espongiforme Bovina/prevención & control , Proteínas
5.
Polymers (Basel) ; 13(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685293

RESUMEN

Reclamation of tailings ponds is a critical issue for the oil industry. After years of consolidation, the slurry in tailings ponds, also known as fluid fine tailings, is mainly comprised of residual bitumen, water, and fine clay particles. To reclaim the lands that these ponds occupy, separation of the solid particles from the liquid phase is necessary to facilitate water removal and recycling. Traditionally, synthetic polymers have been used as flocculants to facilitate this process, but they can have negative environmental consequences. The use of biological polymers may provide a more environmentally friendly approach to flocculation, and eventual soil remediation, due to their natural biodegradability. Peptides derived from specified risk materials (SRM), a proteinaceous waste stream derived from the rendering industry, were investigated to assess their viability for this application. While these peptides could achieve >50% settling within 3 h in bench-scale settling tests using kaolinite tailings, crosslinking peptides with glutaraldehyde greatly improved their flocculation performance, leading to a >50% settling in only 10 min. Settling experiments using materials obtained through different reactant ratios during crosslinking identified a local optimum molar reactant ratio of 1:32 (peptide amino groups to glutaraldehyde aldehyde groups), resulting in 81.6% settling after 48 h. Taken together, these data highlight the novelty of crosslinking waste-derived peptides with glutaraldehyde to generate a value-added bioflocculant with potential for tailings ponds consolidation.

6.
Gland Surg ; 10(7): 2192-2199, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34422590

RESUMEN

BACKGROUND: Modern imaging technologies, such as computed tomographic angiography (CTA), can be useful for preoperative assessment in deep inferior epigastric artery perforator (DIEP) flap surgery. Planning perforator flap design can lead to improved surgical efficiency. However, current imaging modalities are limited by being displayed on a two-dimensional (2D) surface. In contrast, a 3D-printed model provides tactile feedback that facilitates superior understanding. Hence, we have 3D-printed patient-specific deep inferior epigastric artery perforator (DIEP) templates, in an affordable and convenient manner, for preoperative planning. METHODS: Twenty consecutive patients undergoing 25 immediate or delayed post-mastectomy autologous breast reconstruction with DIEP or muscle-sparing transverse rectus abdominis (MS-TRAM) flaps are recruited prospectively. Using free, open-source softwares (3D Slicer, Autodesk MeshMixer, and Cura) and desktop 3D printers (Ultimaker 3E and Moment), we created a template based on a patient's abdominal wall anatomy from CTA, with holes and lines indicating the position of perforators, their intramuscular course and the DIEA pedicle. RESULTS: The mean age of patients was 52 [38-67]. There were 15 immediate and 10 delayed reconstructions. 3D printing time took mean 18 hours and 123.7 g of plastic filament, which calculates to a mean material cost of AUD 8.25. DIEP templates accurately identified the perforators and reduced intraoperative perforator identification by 7.29 minutes (P=0.02). However, the intramuscular dissection time was not affected (P=0.34). Surgeons found the template useful for preoperative marking (8.6/10) and planning (7.9/10), but not for intramuscular dissection (5.9/10). There were no immediate flap-related complications. CONCLUSIONS: Our 3D-printed, patient-specific DIEP template is accurate, significantly reduces intraoperative perforator identification time and, hence, may be a useful tool for preoperative planning in autologous breast reconstruction.

7.
Gland Surg ; 10(7): 2293-2303, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34422600

RESUMEN

A growing number of studies demonstrate the benefits of 3D printing in improving surgical efficiency and subsequently clinical outcomes. However, the number of studies evaluating the accuracy of 3D printing techniques remains scarce. All publications appraising the accuracy of 3D printing between 1950 and 2018 were reviewed using well-established databases, including PubMed, Medline, Web of Science and Embase. An in vivo validation study of our 3D printing technique was undertaken using unprocessed chicken radius bones (Gallus gallus domesticus). Calculating its maximum length, we compared the measurements from computed tomography (CT) scans (CT group), image segmentation (SEG group) and 3D-printed (3DP) models (3DP group). Twenty-eight comparison studies in 19 papers have been identified. Published mean error of CT-based 3D printing techniques were 0.46 mm (1.06%) in stereolithography, 1.05 mm (1.78%) in binder jet technology, 0.72 mm (0.82%) in PolyJet technique, 0.20 mm (0.95%) in fused filament fabrication (FFF) and 0.72 mm (1.25%) in selective laser sintering (SLS). In the current in vivo validation study, mean errors were 0.34 mm (0.86%) in CT group, 1.02 mm (2.51%) in SEG group and 1.16 mm (2.84%) in 3DP group. Our Peninsula 3D printing technique using a FFF 3D printer thus produced accuracy similar to the published studies (1.16 mm, 2.84%). There was a statistically significant difference (P<10-4) between the CT group and the latter SEG and 3DP groups indicating that most of the error is introduced during image segmentation stage.

8.
Materials (Basel) ; 14(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804998

RESUMEN

Fluid fine tailings are produced in huge quantities by Canada's mined oil sands industry. Due to the high colloidal stability of the contained fine solids, settling of fluid fine tailings can take hundreds of years, making the entrapped water unavailable and posing challenges to public health and the environment. This study focuses on developing value-added aggregation agents from specified risk materials (SRM), a waste protein stream from slaughterhouse industries, to achieve an improved separation of fluid fine tailings into free water and solids. Settling results using synthetic kaolinite slurries demonstrated that, though not as effective as hydrolyzed polyacrylamide, a commercial flocculant, the use of SRM-derived peptides enabled a 2-3-fold faster initial settling rate than the blank control. The pH of synthetic kaolinite tailings was observed to be slightly reduced with increasing peptides dosage in the test range (10-50 kg/ton). The experiments on diluted fluid fine tailings (as a representation of real oil sands tailings) demonstrated an optimum peptides dosage of 14 kg/ton, which resulted in a 4-fold faster initial settling rate compared to the untreated tailings. Overall, this study demonstrates the novelty and feasibility of using SRM-peptides to address intractable oil sands fluid tailings.

9.
Bioresour Technol ; 330: 124969, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33740586

RESUMEN

A promising approach to help offset production costs for the cellulosic ethanol industry is to improve ethanol productivity while simultaneously generating value-added by-products. This study reports integration of an advanced fermentation approach (self-cycling fermentation) with the production of cellulose nanocrystals. Specifically, wood pulp was enzymatically hydrolyzed to yield dissolved sugars, which were fed to a self-cycling fermentation system for ethanol production, and residual solids were used for cellulose nanocrystals production via acid hydrolysis. Self-cycling fermentation achieved stable ethanol production for 10 cycles with significantly greater productivity than batch operation: ethanol volumetric productivity increased by 63-95% and annual ethanol productivity by 96 ± 5%. Additionally, the enzyme hydrolysis approach employed did not impede ethanol fermentation, and the cellulose nanocrystals generated displayed properties consistent with previous studies. Taken together, these results highlight the potential of this co-production strategy to produce both cellulosic ethanol and cellulose nanocrystals from a single feedstock.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/metabolismo , Etanol , Fermentación , Hidrólisis , Madera/metabolismo
10.
Waste Biomass Valorization ; 11(12): 6769-6780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33269033

RESUMEN

ABSTRACT: The accumulating volumes of biosolids in lagoons worldwide have intensified the need to develop innovative wastewater treatment strategies. Here, we provide proof-of-concept for the incorporation of biosolids into the hydrolysis step of a two-step thermal conversion of lipids for production of renewable hydrocarbons, which can be utilized as renewable fuels. Brown grease was hydrolysed with biosolids or water at 260-280 °C for 60 min at a mass ratio of 1:1 feed to water or biosolids. The feedstock and products were characterized using various analytical techniques to compare the performance of biosolids to water. The results indicated that there was no significant difference in the degree of hydrolysis of brown grease when biosolids was used as water replacement. The fatty acids composition after hydrolysis when biosolids was used as a water replacement also remained largely unchanged. Hydrolysis of brown grease with biosolids could be achieved at pH ranging from 3.3 to 8.9, and at a lower than previously established temperature. Significantly, the rapid settling of solid material in biosolids observed after thermal hydrolysis of brown grease may reduce the necessity of biosolids settling lagoons. Thus, incorporation of biosolids into a lipid hydrolysis-pyrolysis process may simultaneously benefit the biofuel and waste management sectors.

11.
Front Chem ; 8: 323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391333

RESUMEN

Hydrothermal treatment of wood pulp at 150-225°C prior to acid hydrolysis was investigated in the context of isolating cellulose nanocrystals (CNCs). The objective was 2-folds as follows: (a) generating furfural as a value-added co-product; and (b) concentrating and forming new CNC precursors through thermal re-orientation of para-crystalline cellulose chains that will in turn improve CNC recovery and yield. Furfural yields up to 19 and 21% xylan conversion were obtained at 200 and 225°C hydrothermal treatments, respectively. In addition, these hydrothermal treatment conditions increased the crystallinity index of the pulp (77%) to 84 and 80%, respectively. Consequently, the CNC yield from hydrothermally treated wood pulp, when compared to untreated wood pulp, improved by up to 4- and 2-folds, respectively. An efficient acid hydrolysis process with yield improvements can translate to reduced CNC isolation and purification costs and increased production capacity. The qualities of the CNCs in terms of particle size and crystallinity were not affected due to hydrothermal treatment. However, the zeta potential, sulfur, hydrogen, and oxygen content of the CNCs were significantly lower at 225°C while carbon composition increased, and dark brown coloration was observed that indicates caramelization. This study demonstrates for the first time a novel biorefinery strategy that introduces hydrothermal treatment prior to acid hydrolysis to co-generate furfural and CNC with improved efficiency.

12.
Environ Sci Pollut Res Int ; 27(21): 26395-26405, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32363458

RESUMEN

The escalating generation of biosolids and increasing regulations regarding their safe handling and disposal have created a great environmental challenge. Recently, biosolids have been incorporated into the hydrolysis step of a two-step thermal lipid conversion process to act as water replacement in the production of renewable chemicals and fuels. Here, the hexane extract recovered from hydrolysis of biosolids, lipids from brown grease hydrolyzed using either water (control) or biosolids as a water replacement, was pyrolyzed at 410-450 °C for 2 h. The product distribution and composition were not significantly different when biosolids were used to hydrolyze brown grease instead of water. The liquid product consisted mainly of alkanes, alkenes, aromatics, and cyclic compounds similar to those in petroleum-derived liquid fuels. However, the use of biosolids as a water substitute resulted in a significant increase in sulphur content of the pyrolysate, which will necessitate processes to reduce the sulphur content before or after pyrolysis. Nevertheless, the pathways proposed in this paper are considered as potentially economically viable approaches to not only resolve the issues associated with disposal of biosolids but also to produce renewable hydrocarbons for fuel and chemical applications. Graphical abstract.


Asunto(s)
Biosólidos , Pirólisis , Ácidos Grasos , Hidrocarburos , Hidrólisis
13.
Bioresour Technol ; 303: 122942, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32044650

RESUMEN

Isolation of fiber concentrate enriched in ß-glucan from barley flour via air currents assisted particle separation (ACAPS) generates an underutilized by-product stream, starch concentrate. Since barley starch concentrate (BSC) is depleted in soluble fibre, we examined the enzyme requirements for its hydrolysis and subsequent fermentation. Lower doses of a common raw starch hydrolyzing enzyme (STARGEN™ 002) effectively hydrolyzed BSC, achieving similar hydrolysis kinetics to the wheat benchmark. Hydrolysis of BSC did not require further enzyme supplementation, which is required for optimal wheat hydrolysis. This likely resulted from the smaller particle size of BSC relative to wheat feedstocks. Interestingly, simultaneous saccharification and fermentation of BSC using a 0.25X dose of STARGEN™ 002 alone enabled efficient ethanol production, though a requirement for phosphorus supplementation was identified. This study proposes a biorefining strategy that supports the generation of a value-added co-product, starch concentrate, while significantly reducing the enzyme requirements for bioethanol production.


Asunto(s)
Harina , Hordeum , Fibras de la Dieta , Etanol , Fermentación , Hidrólisis , Almidón
14.
Biotechnol Biofuels ; 13: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31998407

RESUMEN

BACKGROUND: The growth of the cellulosic ethanol industry is currently impeded by high production costs. One possible solution is to improve the performance of fermentation itself, which has great potential to improve the economics of the entire production process. Here, we demonstrated significantly improved productivity through application of an advanced fermentation approach, named self-cycling fermentation (SCF), for cellulosic ethanol production. RESULTS: The flow rate of outlet gas from the fermenter was used as a real-time monitoring parameter to drive the cycling of the ethanol fermentation process. Then, long-term operation of SCF under anaerobic conditions was improved by the addition of ergosterol and fatty acids, which stabilized operation and reduced fermentation time. Finally, an automated SCF system was successfully operated for 21 cycles, with robust behavior and stable ethanol production. SCF maintained similar ethanol titers to batch operation while significantly reducing fermentation and down times. This led to significant improvements in ethanol volumetric productivity (the amount of ethanol produced by a cycle per working volume per cycle time)-ranging from 37.5 to 75.3%, depending on the cycle number, and in annual ethanol productivity (the amount of ethanol that can be produced each year at large scale)-reaching 75.8 ± 2.9%. Improved flocculation, with potential advantages for biomass removal and reduction in downstream costs, was also observed. CONCLUSION: Our successful demonstration of SCF could help reduce production costs for the cellulosic ethanol industry through improved productivity and automated operation.

15.
J Hand Surg Am ; 44(9): 728-741.e10, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31262534

RESUMEN

PURPOSE: The purpose of the current review was to estimate failure rates of trapeziometacarpal (TMC) implants and compare against failure rates of nonimplant techniques for surgical treatment of TMC joint (basal thumb joint) arthritis. METHODS: A systematic review was conducted to identify articles reporting on thumb implant arthroplasty and on nonimplant arthroplasty techniques for treatment of base of thumb arthritis in the English literature. The collected data were combined to calculate failure rates per 100 procedure-years. Failure was defined by the requirement for a secondary salvage procedure. The failure rates between different implant and nonimplant arthroplasty groups were compared directly and implants with higher than anticipated failure rates were identified. RESULTS: One hundred twenty-five articles on implant arthroplasty and 33 articles on the outcome of nonimplant surgical arthroplasty of the TMC joint were included. The implant arthroplasty failure rates per 100 procedure-years were total joint replacement (2.4), hemiarthroplasty (2.5), interposition with partial trapezial resection (4.5), interposition with complete trapezial resection (1.7), and interposition with no trapezial resection (4.5). The nonimplant arthroplasty failure rates per 100 procedure-years were: trapeziectomy (0.49), joint fusion (0.52), and trapeziectomy with ligament reconstruction ± tendon interposition (0.23). CONCLUSIONS: Several implant designs (arthroplasties) had high rates of failure due to aseptic loosening, dislocation, and persisting pain. Furthermore, some implants had higher than anticipated failure rates than other implants within each class. Overall, the failure rates of nonimplant techniques were lower than those of implant arthroplasty. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic IV.


Asunto(s)
Artroplastia de Reemplazo/métodos , Osteoartritis/cirugía , Pulgar/cirugía , Articulación de la Muñeca/cirugía , Humanos , Prótesis Articulares , Insuficiencia del Tratamiento
16.
Plast Reconstr Surg Glob Open ; 6(10): e1960, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30534500

RESUMEN

BACKGROUND: There is limited understanding of anatomy of perforator angiosomes, or "perforasomes," of the deep inferior epigastric artery (DIEA). A perforasome is defined as the territory perfused by a single perforator vessel of a named artery, such as the DIEA. Given the clinical significance of this anatomical concept in microsurgical breast reconstruction, this study is a quantitative investigation of DIEA perforasome characteristics and patterns associated with perforasome size, perforator caliber, location and branching, using computed tomographic (CT) angiography. METHODS: Twenty abdominal arterial-phase CT angiograms were analyzed in 3 dimensions using software (Horos). DIEA perforasomes were mapped, yielding data on 40 medial-row and 40 lateral-row perforasomes. Perforator branch extents and number were measured using 3-dimensional multi-planar reconstruction, and perforator caliber on axial slices. RESULTS: Perforasomes exhibited eccentric branching distributions in horizontal and vertical axes, that is, a majority of perforators were not centrally located within their perforasomes. Lateral-row perforasomes displayed greater horizontal eccentricity than medial-row. There was a positive correlation between perforator caliber and perforasome size. Medial-row perforators had more branches and larger caliber than lateral-row. CONCLUSIONS: This is the first article to quantify relationships between perforators and their territories of supply in vivo, augmenting current understanding of perforasome theory. DIEA perforasomes can be readily visualized and mapped with CT angiography, which may enable effective preoperative flap planning in DIEA perforator flap breast reconstruction. Future investigation may highlight the importance of this information in improving surgical outcomes, including flap survival and fat necrosis reduction, through careful, perforasome-based flap design.

17.
Materials (Basel) ; 11(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205440

RESUMEN

In this study, fermentable sugars and cellulose nanocrystals (CNCs) were co-produced from endoglucanase treatment of wood pulp, followed by acid hydrolysis. Enzymatic hydrolysis was performed using two endoglucanases differentiated by the presence or absence of a cellulose-binding domain (CBD). The enzyme with an intact CBD gave the higher glucan conversion (up to 14.1 ± 1.2 wt %) and improved the degree of crystallinity of the recovered wood pulp fiber (up to 83.0 ± 1.0%). Thus, this endoglucanase-assisted treatment successfully removed amorphous content from the original cellulosic feedstock. CNC recovery (16.9 ± 0.7 wt %) from the feedstock going into the acid hydrolysis was improved relative to untreated pulp (13.2 ± 0.6 wt %). The mass loss from enzymatic treatment did not cause a decrease in the CNC yield from the starting material. The characteristics of CNCs obtained through acid hydrolysis (with or without enzyme treatment of pulp) were analyzed using X-ray diffraction, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and differential scanning calorimetry as characterization techniques. The CNCs generated through acid hydrolysis of endoglucanase-treated wood pulp displayed comparable properties relative to those generated using untreated pulp. Thus, endoglucanase treatment can enable co-production of CNCs and sugars for biofuel fermentation.

18.
Materials (Basel) ; 11(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042345

RESUMEN

Integrating enzymatic treatment and acid hydrolysis potentially improves the economics of cellulose nanocrystal (CNC) production and demonstrates a sustainable cellulosic ethanol co-generation strategy. In this study, the effect of enzymatic treatment on filter paper and wood pulp fibers, and CNCs generated via subsequent acid hydrolysis were assessed. Characterization was performed using a pulp quality monitoring system, scanning and transmission electron microscopies, dynamic light scattering, X-ray diffraction, and thermogravimetric analysis. Enzymatic treatment partially reduced fiber length, but caused swelling, indicating simultaneous fragmentation and layer erosion. Preferential hydrolysis of less ordered cellulose by cellulases slightly improved the crystallinity index of filter paper fiber from 86% to 88%, though no change was observed for wood pulp fibre. All CNC colloids were stable with zeta potential values below -39 mV and hydrodynamic diameters ranging from 205 to 294 nm. Furthermore, the temperature for the peak rate of CNC thermal degradation was generally not affected by enzymatic treatment. These findings demonstrate that CNCs of comparable quality can be produced from an enzymatically-mediated acid hydrolysis biorefining strategy that co-generates fermentable sugars for biofuel production.

19.
J Environ Manage ; 220: 227-232, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29778959

RESUMEN

Although the improved dewaterability and digestibility of primary biosolids subjected to thermal hydrolysis has been studied for decades, there are a surprisingly small number of studies exploring the use of this thermal treatment for digested biosolids that are typically left to settle in large settling lagoons. This is likely because of the high capital and operating costs associated with thermal hydrolysis, coupled with the limited applications and value of the resulting products. However, due to the anticipated increases in the amount of generated biosolids combined with issues surrounding potential environmental release and the limited availability of land for additional lagoons, other biosolids management strategies are being explored. Here, we show that thermal hydrolysis at 280 °C for 1 h resulted in 78.2 ±â€¯0.8% settling after 2 h. Furthermore, addition of phosphoric acid to lower the pH of the hydrolysate to pH 3 resulted in increased settling rates, but the final volume of unsettled material after 2 h was statistically similar to the thermally hydrolyzed material without pH adjustment (75.7 ±â€¯2.3%). Remarkably, when the pH of the digested biosolids was adjusted to 3 prior to thermal hydrolysis, a settling rate of 87.3 ±â€¯1.1% was observed after just 15 min. Significantly, the dewaterability of thermally hydrolyzed biosolids was measured in our experiments through natural settling, without the use of external mechanics. Taken together, the data presented in this paper demonstrate that high temperature thermal hydrolysis is a promising method for accelerating the settling rates of digested biosolids and may represent a viable alternative to building and maintaining biosolids lagoons.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Hidrólisis
20.
Plast Reconstr Surg Glob Open ; 6(1): e1644, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29464169

RESUMEN

Optimizing preoperative planning is widely sought in deep inferior epigastric artery perforator (DIEP) flap surgery. One reason for this is that rates of fat necrosis remain relatively high (up to 35%), and that adjusting flap design by an improved understanding of individual perforasomes and perfusion characteristics may be useful in reducing the risk of fat necrosis. Imaging techniques have substantially improved over the past decade, and with recent advances in 3D printing, an improved demonstration of imaged anatomy has become available. We describe a 3D-printed template that can be used preoperatively to mark out a patient's individualized perforasome for flap planning in DIEP flap surgery. We describe this "perforasome template" technique in a case of a 46-year-old woman undergoing immediate unilateral breast reconstruction with a DIEP flap. Routine preoperative computed tomographic angiography was performed, with open-source software (3D Slicer, Autodesk MeshMixer and Cura) and a desktop 3D printer (Ultimaker 3E) used to create a template used to mark intra-flap, subcutaneous branches of deep inferior epigastric artery (DIEA) perforators on the abdomen. An individualized 3D printed template was used to estimate the size and boundaries of a perforasome and perfusion map. The information was used to aid flap design. We describe a new technique of 3D printing a patient-specific perforasome template that can be used preoperatively to infer perforasomes and aid flap design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...