Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Colloid Interface Sci ; 675: 379-390, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972125

RESUMEN

Nowadays, the inherent re-stacking nature and weak d-p hybridization orbital interactions within MXene remains significant challenges in the field of electrocatalytic water splitting, leading to unsatisfactory electrocatalytic activity and cycling stability. Herein, this work aims to address these challenges and improve electrocatalytic performance by utilizing cobalt nanoparticles intercalation coupled with enhanced π-donation effect. Specifically, cobalt nanoparticles are integrated into V2C MXene nanosheets to mitigate the re-stacking issue. Meanwhile, a notable charge redistribution from cobalt to vanadium elevates orbital levels, reduces π*-antibonding orbital occupancy and alleviates Jahn-Teller distortion. Doping with tellurium induces localized electric field rearrangement resulting from the changes in electron cloud density. As a result, Co-V2C MXene-Te acquires desirable activity for hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 80.8 mV and 287.7 mV, respectively, at the current density of -10 mA cm-2 and 10 mA cm-2. The overall water splitting device achieves an impressive low cell voltage requirement of 1.51 V to obtain 10 mA cm-2. Overall, this work could offer a promising solution when facing the re-stacking issue and weak d-p hybridization orbital interactions of MXene, furnishing a high-performance electrocatalyst with favorable electrocatalytic activity and cycling stability.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38871210
3.
Int J Biol Macromol ; 271(Pt 1): 132693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806086

RESUMEN

In this study, a novel double-layer slow-release fertilizer (SRF) was developed utilizing stearic acid (SA) as a hydrophobic inner coating and a blend of starch phosphate carbamate (abbreviated as SPC) and polyvinyl alcohol (PVA) as a hydrophilic outer coating (designated as SPCP). The mass ratios of SPC and PVA in the SPCP matrices were systematically optimized by comprehensively checking the water absorbency, water contact angle (WCA), water retention property (WR), and mechanical properties such as percentage elongation at break and tensile strength with FTIR, XRD, EDS, and XPS techniques, etc. Moreover, the optimal SPCP/5:5 demonstrated superior water absorbency with an 80.2 % increase for the total mass compared to natural starch/PVA(NSP), along with desirable water retention capacity in the soil, exhibiting a weight loss of only 48 % over 13 d. Relative to pure urea and SA/NSPU/5:5, SA/SPCPU/5:5 released 50.3 % of its nutrient within 15 h, leading to nearly complete release over 25 h in the aqueous phase, while only 46.6 % of urea was released within 20 d in soil, extending to approximately 30 d. The slow release performance of urea reveals that the diffusion rate of urea release shows a significant decrease with an increase in coating layers. Consequently, this work demonstrated a prospective technology for the exploration of environmentally friendly SRF by integrating biodegradable starch derivatives with other polymers.


Asunto(s)
Preparaciones de Acción Retardada , Fertilizantes , Alcohol Polivinílico , Almidón , Urea , Agua , Almidón/química , Alcohol Polivinílico/química , Urea/química , Agua/química , Biodegradación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas , Suelo/química
4.
Dalton Trans ; 53(24): 10142-10149, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38818546

RESUMEN

The development of excellent bifunctional electrocatalysts is an effective way to promote the industrial application of electrolytic water. In this work, a free-standing W-doped cobalt selenide (W-CoSe300/NF) electrocatalyst with a snowflake-like structure supported on nickel foam was prepared by a hydrothermal-selenization strategy. Benefiting from the high specific surface area of the 3D snowflake-like structure and the regulation of tungsten doping on the electronic structure of the metal active center, W-CoSe300/NF shows remarkable electrocatalytic water decomposition performance. In 1.0 M KOH, the W-CoSe300/NF electrocatalyst achieved an efficient HER and OER at a current density of 50 mA cm-2 with overpotentials as low as 84 mV and 283 mV, respectively. More importantly, W-CoSe300/NF acts as both the anode and cathode of the electrolytic tank, requiring only a potential of 1.54 V to obtain 10 mA cm-2 and can operate continuously for more than 120 hours at this current density. This study proposes a new way for the design of high efficiency and affordable bifunctional electrocatalysts.

5.
Adv Sci (Weinh) ; 11(25): e2401455, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38659236

RESUMEN

In this work, a novel liquid nitrogen quenching strategy is engineered to fulfill iron active center coordination reconstruction within iron carbide (Fe3C) modified on biomass-derived nitrogen-doped porous carbon (NC) for initiating rapid hydrogen and oxygen evolution, where the chrysanthemum tea (elm seeds, corn leaves, and shaddock peel, etc.) is treated as biomass carbon source within Fe3C and NC. Moreover, the original thermodynamic stability is changed through the corresponding force generated by liquid nitrogen quenching and the phase transformation is induced with rich carbon vacancies with the increasing instantaneous temperature drop amplitude. Noteworthy, the optimizing intermediate absorption/desorption is achieved by new phases, Fe coordination, and carbon vacancies. The Fe3C/NC-550 (550 refers to quenching temperature) demonstrates outstanding overpotential for hydrogen evolution reaction (26.3 mV at -10 mA cm-2) and oxygen evolution reaction (281.4 mV at 10 mA cm-2), favorable overall water splitting activity (1.57 V at 10 mA cm-2). Density functional theory (DFT) calculations further confirm that liquid nitrogen quenching treatment can enhance the intrinsic electrocatalytic activity efficiently by optimizing the adsorption free energy of reaction intermediates. Overall, the above results authenticate that liquid nitrogen quenching strategy open up new possibilities for obtaining highly active electrocatalysts for the new generation of green energy conversion systems.

6.
J Colloid Interface Sci ; 667: 237-248, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636225

RESUMEN

Traditional phase engineering enhances conductivity or activity by fully converting electrocatalytic materials into either a crystalline or an amorphous state, but this approach often faces limitations. Thus, a practical solution entails balancing the dynamic attributes of both phases to maximize an electrocatalyst's functionality is urgently needed. Herein, in this work, Co/Co2C crystals have been assembled on the amorphous N, S co-doped porous carbon (NSPC) through hydrothermal and calcination processes. The stable biphase structure and amorphous/crystalline (A/C) interface enhance conductivity and intrinsic activity. Moreover, the adsorption ability of water molecules and intermediates is improved significantly attributed to the rich oxygen-containing groups, unsaturated bonds, and defect sites of NSPC, which accelerates proton-coupled electron transfer (PCET) and overall water splitting. Consequently, A/C-Co/Co2C/NSPC (Co/Co2C/NSPC with amorphous/crystalline interface) exhibits outstanding behavior for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), requiring the overpotential of 240.0 mV and 70.0 mV to achieve 10 mA cm-2. Moreover, an electrolyzer assembled by A/C-Co/Co2C/NSPC-3 (anode) and A/C-Co/Co2C/NSPC-2 (cathode) demonstrates a low drive voltage of 1.54 V during overall water splitting process. Overall, this work has pioneered the coexistence of crystalline/amorphous phases in electrocatalysts and provided new insights into phase engineering.

7.
Chempluschem ; 89(7): e202300605, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38459914

RESUMEN

Strain engineering is a novel method that can achieve superior performance for different applications. The lattice strain can affect the performance of electrochemical catalysts by changing the binding energy between the surface-active sites and intermediates and can be affected by the thickness, surface defects and composition of the materials. In this review, we summarized the basic principle, characterization method, introduction strategy and application direction of lattice strain. The reactions on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are focused. Finally, the present challenges are summarized, and suggestions for the future development of lattice strain in electrocatalytic overall water splitting are put forward.

12.
Front Public Health ; 11: 1210669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869197

RESUMEN

Objectives: The main objective was to examine the relationship between weight-adjusted waist index (WWI) and the prevalence of hypertension among individuals aged ≥60 years who participated in the NHANES between 2011 and 2018 years. Methods: The data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. In this population-based study, we focused on participants who were over 60 years old. Data were collected from the aforementioned survey, and the variable of interest was WWI, which was calculated as waist (cm) divided by the square root of body weight (kg). Multivariable logistic regression model was applied to calculate adjusted ORs with 95% CIs in order to explore any possible correlation between WWI and the prevalence of hypertension. Subgroup analysis were used to verify the stability of the relationship between WWI and the prevalence of hypertension. The interaction tests were also conducted in this research. Results: Results revealed that adults aged ≥60 years who were in the highest WWI quartile had significantly higher chances of developing hypertension when compared to those in the lowest quartile, after adjusting for covariates and potential confounders (p < 0.001). Conclusion: These findings suggest that there is a strong correlation between elevated levels of WWI and the risk of developing hypertension among older adults. As such, WWI could serve as a unique and valuable biomarker for identifying hypertension risk at an earlier stage in the older adults population.


Asunto(s)
Hipertensión , Obesidad , Humanos , Anciano , Persona de Mediana Edad , Encuestas Nutricionales , Prevalencia , Índice de Masa Corporal , Obesidad/epidemiología , Hipertensión/epidemiología
13.
Nanotechnology ; 34(46)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37567166

RESUMEN

In this work, a novel nitrogen-phosphorus co-doped carbon quantum dots (N, P-CQDs) hydrogel was developed utilizing the as-synthesized N, P-CQDs and acrylamide (AM) with the existence of ammonium persulfate and N, N'-methylene bisacrylamide (N-MBA). In consistent with pure N, P-CQDs, the N, P-CQDs hydrogel also shows a dramatic fluorescence property with maximum emission wavelength of 440 nm, which can also be quenched after adsorbing iron ions (Fe3+). When the concentration of Fe3+is 0-6 mmol l-1, a better linear relationship between Fe3+concentration and the fluorescence intensities can be easily obtained. Additionally, the N, P-CQDs hydrogel exhibits better recyclability. This confirms that the N, P-CQDs hydrogel can be used for adsorbing and detecting Fe3+in aqueous with on-off-on mode. The fluorescence quenching mainly involves three procedures including the adsorption of Fe3+by hydrogel, integration of Fe3+with N, P-CQDs and the transportation of conjugate electrons in N, P-CQDs to the vacant orbits of Fe3+and the adsorption process follows a pseudo-second-order kinetic model confirmed in the Freundlich isotherm model. In conclusion, this work provides a novel route for synchronously removing and detecting the metal ions in aqueous by integrating N, P-CQDs with hydrogel with better recyclability.

14.
ACS Appl Mater Interfaces ; 15(12): 15797-15809, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36930051

RESUMEN

Transition metal carbon/nitride (MXene) holds immense potential as an innovative electrocatalyst for enhancing the overall water splitting properties. Nevertheless, the re-stacking nature induced by van der Waals force remains a significant challenge. In this work, the lattice tensile-strained porous V2C-MXene (named as TS(24)-P(50)-V2C) is successfully constructed via the rapid spray freezing method and the following hydrothermal treatment. Besides, the influence of lattice strain degree and microscopic pores on the catalytic ability is reviewed and explored systematically. The lattice tensile strain within V2C-MXene could widen the interlayer spacing and accelerate the ion transfer. The microscopic pores could change the ion transmission path and shorten the migration distance. As a consequence, the obtained TS(24)-P(50)-V2C shows extraordinary hydrogen evolution reaction and oxygen evolution reaction activity with the overpotential of 154 and 269 mV, respectively, at the current density of 10 mA/cm2, which is quite remarkable compared to the MXene-based electrocatalysts. Moreover, the overall water splitting device assembled using TS(24)-P(50)-V2C as both anode and cathode demonstrates a low cell voltage requirement of 1.57 V to obtain 10 mA/cm2. Overall, the implementation of this work could offer an exciting avenue to overcome the re-stacking issue of V2C-MXene, affording a high-efficiency electrocatalyst with superior catalytic activity and desirable reaction kinetics.

15.
J Colloid Interface Sci ; 638: 813-824, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791479

RESUMEN

In this work, the lattice tensile strain of nitrogen/fluorine co-doping ferroferric oxide (Fe3O4) nanocubes assembled on chrysanthemum tea-derived porous carbon is induced through a novel liquid nitrogen quenching treatment (named as TS-NF-FO/PCX-Y, TS: Tensile strain, NF: Nitrogen/Fluorine co-doping, FO: Fe3O4, PC: Porous carbon, X: The weight ratio of KOH/carbon, Y: The adding amount of porous carbon). Besides, the electrocatalytic activity influenced by the adding amount of porous carbon, the type of dopant, and the introduction of lattice tensile strain is systematically studied and explored. The interconnected porous carbon could improve electrical conductivity and prevent Fe3O4 nanocubes from aggregating. The induced nitrogen/fluorine could cause extrinsic defects and tailor the intrinsic electron state of the host materials. Lattice tensile strain could tailor the surface electronic structure of Fe3O4 via changing the dispersion of surface atoms and their bond lengths. Impressively, the designed TS-NF-FO/PC5-0.25 delivers a low overpotential of 207.3 ± 0.4 mV at 10 mA/cm2 and demonstrates desirable reaction dynamics. Density functional theory calculations illustrate that the electron structure and hydrogen adsorption free energy (ΔG*H) are optimized by the synergistic effect among porous carbon, nitrogen/fluorine co-doping and lattice tensile strain, thus promoting hydrogen evolution reaction (HER) catalytic activity. Overall, this work paves the way to unravel the enhancement mechanism of HER on transition metal oxide-based materials by electronic structure and phase composition modulation strategy.

16.
Radiat Prot Dosimetry ; 198(17): 1338-1345, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961020

RESUMEN

The cytokinesis-block micronucleus assay has proven to be a reliable technique for biological dosimetry. This study aimed to establish the dose-response curve for X-ray-induced micronucleus. Peripheral blood samples from three healthy donors were irradiated with various doses and scoring criteria by the micronuclei (MN) in binucleated cells. The results showed that the frequency of MN increased with the elevation of radiation dose. CABAS and Dose Estimate software were used to fit the MN and dose into a linear quadratic model, and the results were compared. The linear and quadratic coefficients obtained by the two software were basically the same and were comparable with published curves of similar radiation quality and dose rates by other studies. The dose-response curve established in this study can be used as an alternative method for in vitro dose reconstruction and provides a reliable tool for biological dosimetry in accidental or occupational radiation exposures.


Asunto(s)
Linfocitos , Micronúcleos con Defecto Cromosómico , Calibración , Relación Dosis-Respuesta en la Radiación , Humanos , Pruebas de Micronúcleos/métodos , Rayos X
17.
Nanotechnology ; 33(27)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35344938

RESUMEN

In this work, a kind of boron doped carbon spheres (B-CSs) was successfully synthesized utilizing maize starch as carbon source and boric acid as dopant via facile solvothermal method. The chemical structure of the prepared B-CSs was systemically investigated by TEM, FT-IR, XRD, XPS and EDS. The synthesized B-CSs feature spherical structure with average size of ∼254 nm and exhibit strong photoluminescence (PL) with maximum emission at a wavelength of ∼453 nm under irradiation at 350 nm, leading to a quantum yield of 6.2%. Furthermore, the aqueous pH and Cr(VI) has a significantly various impact on the PL intensity of B-CSs, which can be flexibly utilized as the PL sensor for detection aqueous pH and Cr(VI) in aqueous. Particularly, the B-CSs have a desirable sensitivity and selectivity for detection of Cr(VI) with a low detection limit of ∼0.34µmol l-1. Conclusively, our work provides a novel and dual-functional fluorescent sensor for detection of the pH and toxic metal ions in water environment.

18.
J Colloid Interface Sci ; 608(Pt 3): 2921-2931, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34799045

RESUMEN

The exploitation of efficient electrocatalyst is significantly important for degradation of refractory organic pollutants. Herein, a novel Ti/CoTiO3/Ce-PbO2 composite electrocatalyst (abbreviated as CTO/CP) is successfully constructed via facile consecutive immersion pyrolysis and electro-deposition method and then systematically characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and near infrared chemical imaging (NIR-CI). Importantly, the electrochemical measurements demonstrate that the CTO/CP possesses numerous prominent properties such as lower charge transfer resistance, larger electroactive area, higher oxygen evolution potential than those of the pristine Ti/CoTiO3 (CTO) and Ti/Ce-PbO2 (CP). Thereby, the CTO/CP exhibits an enhanced electrocatalytic degradation performance with the degradation efficiency as high as 90.0% and COD removal rate of 88.3% at 180 min for the optimal CTO/CP (denoted as 10 layers of CTO and 1 h electrodeposition of CP), in which the ·OH is the major reactive species. Additionally, the optimal CTO/CP also shows a higher ICE/ACE together with lower EEC and desirable stability, universal applicability for many different dyes and reusability. Overall, this work offers a promising approach for enhancing the electrocatalytic properties of CTO via introducing CP.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Electrodos , Oxidación-Reducción , Óxidos , Espectroscopía Infrarroja por Transformada de Fourier , Titanio , Contaminantes Químicos del Agua/análisis
19.
J Colloid Interface Sci ; 599: 577-585, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33971566

RESUMEN

Cobalt-based transition metal phosphides/sulfides have been viewed as promising candidates for supercapacitor (SCs) and hydrogen evolution reaction (HER) featured with their intrinsic merits. Nevertheless, the sluggish reaction kinetics and drastic volume expansion upon electrochemical process hinder their commercial application. In this work, the hollow/porous cobalt sulfide/phosphide based nanocuboids (C-CoP4 and CoS2 HNs) with superior specific surface area are achieved by employing a novel chemical etching-phosphatization/sulfuration strategy. The hollow/porous structure could offer rich active sites and shorten electrons/ions diffusion length. In virtue of their structural advantage, the obtained C-CoP4 and CoS2 HNs perform superior specific capacitance, fast charge/discharge rate and beneficial cycling stability. The advanced asymmetrical supercapacitors assembled by C-CoP4 and CoS2 HNs deliver exceptional energy density, respectively. Furthermore, when employed as hydrogen evolution reaction electrocatalysts, C-CoP4 and CoS2 HNs yield favorable electrocatalytic activity. These findings shed fundamental insight on the design of dual-functional transition metal phosphide/sulfide based materials for optimizing hydrogen evolution reaction and supercapacitor storage properties.

20.
Front Oncol ; 10: 58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117722

RESUMEN

This study aimed to determine the anti-proliferative and anti-migratory effects of 7-methoxy-1-tetralone (MT) in hepatocellular carcinoma (HCC) cells. MTT assay assessed HCC cell viability; cell apoptosis of HCC cells was determined by flow cytometry; wound healing assay evaluated HCC cell migratory ability; protein expression levels were assessed using western blot assay; the in vivo antitumor effects of MT were tested in BALB/c nude mice and the pathological changes within the tumor tissues were evaluated by immunohistochemistry. MT treatment significantly suppressed the cell proliferative and migratory potentials of HepG2 cells, and induced HepG2 cell apoptosis. The western blot assay showed that MT treatment caused a suppression on c-Met, phosphorylated AKT (p-AKT), NF-κB, matrix metallopeptidase 2 (MMP2)/MMP9 protein levels in HepG2 cells. Further in vivo animal studies deciphered that MT treatment suppressed tumor growth of HepG2 cells in the nude mice, but had no effect on the body weight and the organ index of liver and spleen. Further immunohistochemistry analysis of the dissected tumor tissues showed that MT treatment significantly suppressed the protein expression levels of NF-κB, MMP9, MMP2, and p-AKT. In summary, the present study demonstrated the anti-tumor effects of MT on the HCC, and MT suppressed HCC progression possibly via regulating proliferation- and migration-related mediators including c-Met, p-AKT, NF-κB, MMP2, and MMP9 in HepG2 cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA