Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 271(Pt 1): 132693, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38806086

RESUMEN

In this study, a novel double-layer slow-release fertilizer (SRF) was developed utilizing stearic acid (SA) as a hydrophobic inner coating and a blend of starch phosphate carbamate (abbreviated as SPC) and polyvinyl alcohol (PVA) as a hydrophilic outer coating (designated as SPCP). The mass ratios of SPC and PVA in the SPCP matrices were systematically optimized by comprehensively checking the water absorbency, water contact angle (WCA), water retention property (WR), and mechanical properties such as percentage elongation at break and tensile strength with FTIR, XRD, EDS, and XPS techniques, etc. Moreover, the optimal SPCP/5:5 demonstrated superior water absorbency with an 80.2 % increase for the total mass compared to natural starch/PVA(NSP), along with desirable water retention capacity in the soil, exhibiting a weight loss of only 48 % over 13 d. Relative to pure urea and SA/NSPU/5:5, SA/SPCPU/5:5 released 50.3 % of its nutrient within 15 h, leading to nearly complete release over 25 h in the aqueous phase, while only 46.6 % of urea was released within 20 d in soil, extending to approximately 30 d. The slow release performance of urea reveals that the diffusion rate of urea release shows a significant decrease with an increase in coating layers. Consequently, this work demonstrated a prospective technology for the exploration of environmentally friendly SRF by integrating biodegradable starch derivatives with other polymers.

2.
Dalton Trans ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818546

RESUMEN

The development of excellent bifunctional electrocatalysts is an effective way to promote the industrial application of electrolytic water. In this work, a free-standing W-doped cobalt selenide (W-CoSe300/NF) electrocatalyst with a snowflake-like structure supported on nickel foam was prepared by a hydrothermal-selenization strategy. Benefiting from the high specific surface area of the 3D snowflake-like structure and the regulation of tungsten doping on the electronic structure of the metal active center, W-CoSe300/NF shows remarkable electrocatalytic water decomposition performance. In 1.0 M KOH, the W-CoSe300/NF electrocatalyst achieved an efficient HER and OER at a current density of 50 mA cm-2 with overpotentials as low as 84 mV and 283 mV, respectively. More importantly, W-CoSe300/NF acts as both the anode and cathode of the electrolytic tank, requiring only a potential of 1.54 V to obtain 10 mA cm-2 and can operate continuously for more than 120 hours at this current density. This study proposes a new way for the design of high efficiency and affordable bifunctional electrocatalysts.

3.
Adv Sci (Weinh) ; : e2401455, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659236

RESUMEN

In this work, a novel liquid nitrogen quenching strategy is engineered to fulfill iron active center coordination reconstruction within iron carbide (Fe3C) modified on biomass-derived nitrogen-doped porous carbon (NC) for initiating rapid hydrogen and oxygen evolution, where the chrysanthemum tea (elm seeds, corn leaves, and shaddock peel, etc.) is treated as biomass carbon source within Fe3C and NC. Moreover, the original thermodynamic stability is changed through the corresponding force generated by liquid nitrogen quenching and the phase transformation is induced with rich carbon vacancies with the increasing instantaneous temperature drop amplitude. Noteworthy, the optimizing intermediate absorption/desorption is achieved by new phases, Fe coordination, and carbon vacancies. The Fe3C/NC-550 (550 refers to quenching temperature) demonstrates outstanding overpotential for hydrogen evolution reaction (26.3 mV at -10 mA cm-2) and oxygen evolution reaction (281.4 mV at 10 mA cm-2), favorable overall water splitting activity (1.57 V at 10 mA cm-2). Density functional theory (DFT) calculations further confirm that liquid nitrogen quenching treatment can enhance the intrinsic electrocatalytic activity efficiently by optimizing the adsorption free energy of reaction intermediates. Overall, the above results authenticate that liquid nitrogen quenching strategy open up new possibilities for obtaining highly active electrocatalysts for the new generation of green energy conversion systems.

4.
J Colloid Interface Sci ; 667: 237-248, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636225

RESUMEN

Traditional phase engineering enhances conductivity or activity by fully converting electrocatalytic materials into either a crystalline or an amorphous state, but this approach often faces limitations. Thus, a practical solution entails balancing the dynamic attributes of both phases to maximize an electrocatalyst's functionality is urgently needed. Herein, in this work, Co/Co2C crystals have been assembled on the amorphous N, S co-doped porous carbon (NSPC) through hydrothermal and calcination processes. The stable biphase structure and amorphous/crystalline (A/C) interface enhance conductivity and intrinsic activity. Moreover, the adsorption ability of water molecules and intermediates is improved significantly attributed to the rich oxygen-containing groups, unsaturated bonds, and defect sites of NSPC, which accelerates proton-coupled electron transfer (PCET) and overall water splitting. Consequently, A/C-Co/Co2C/NSPC (Co/Co2C/NSPC with amorphous/crystalline interface) exhibits outstanding behavior for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), requiring the overpotential of 240.0 mV and 70.0 mV to achieve 10 mA cm-2. Moreover, an electrolyzer assembled by A/C-Co/Co2C/NSPC-3 (anode) and A/C-Co/Co2C/NSPC-2 (cathode) demonstrates a low drive voltage of 1.54 V during overall water splitting process. Overall, this work has pioneered the coexistence of crystalline/amorphous phases in electrocatalysts and provided new insights into phase engineering.

5.
Chempluschem ; : e202300605, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459914

RESUMEN

Strain engineering is a novel method that can achieve superior performance for different applications. The lattice strain can affect the performance of electrochemical catalysts by changing the binding energy between the surface-active sites and intermediates and can be affected by the thickness, surface defects and composition of the materials. In this review, we summarized the basic principle, characterization method, introduction strategy and application direction of lattice strain. The reactions on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are focused. Finally, the present challenges are summarized, and suggestions for the future development of lattice strain in electrocatalytic overall water splitting are put forward.

6.
Nanotechnology ; 34(46)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37567166

RESUMEN

In this work, a novel nitrogen-phosphorus co-doped carbon quantum dots (N, P-CQDs) hydrogel was developed utilizing the as-synthesized N, P-CQDs and acrylamide (AM) with the existence of ammonium persulfate and N, N'-methylene bisacrylamide (N-MBA). In consistent with pure N, P-CQDs, the N, P-CQDs hydrogel also shows a dramatic fluorescence property with maximum emission wavelength of 440 nm, which can also be quenched after adsorbing iron ions (Fe3+). When the concentration of Fe3+is 0-6 mmol l-1, a better linear relationship between Fe3+concentration and the fluorescence intensities can be easily obtained. Additionally, the N, P-CQDs hydrogel exhibits better recyclability. This confirms that the N, P-CQDs hydrogel can be used for adsorbing and detecting Fe3+in aqueous with on-off-on mode. The fluorescence quenching mainly involves three procedures including the adsorption of Fe3+by hydrogel, integration of Fe3+with N, P-CQDs and the transportation of conjugate electrons in N, P-CQDs to the vacant orbits of Fe3+and the adsorption process follows a pseudo-second-order kinetic model confirmed in the Freundlich isotherm model. In conclusion, this work provides a novel route for synchronously removing and detecting the metal ions in aqueous by integrating N, P-CQDs with hydrogel with better recyclability.

7.
ACS Appl Mater Interfaces ; 15(12): 15797-15809, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36930051

RESUMEN

Transition metal carbon/nitride (MXene) holds immense potential as an innovative electrocatalyst for enhancing the overall water splitting properties. Nevertheless, the re-stacking nature induced by van der Waals force remains a significant challenge. In this work, the lattice tensile-strained porous V2C-MXene (named as TS(24)-P(50)-V2C) is successfully constructed via the rapid spray freezing method and the following hydrothermal treatment. Besides, the influence of lattice strain degree and microscopic pores on the catalytic ability is reviewed and explored systematically. The lattice tensile strain within V2C-MXene could widen the interlayer spacing and accelerate the ion transfer. The microscopic pores could change the ion transmission path and shorten the migration distance. As a consequence, the obtained TS(24)-P(50)-V2C shows extraordinary hydrogen evolution reaction and oxygen evolution reaction activity with the overpotential of 154 and 269 mV, respectively, at the current density of 10 mA/cm2, which is quite remarkable compared to the MXene-based electrocatalysts. Moreover, the overall water splitting device assembled using TS(24)-P(50)-V2C as both anode and cathode demonstrates a low cell voltage requirement of 1.57 V to obtain 10 mA/cm2. Overall, the implementation of this work could offer an exciting avenue to overcome the re-stacking issue of V2C-MXene, affording a high-efficiency electrocatalyst with superior catalytic activity and desirable reaction kinetics.

8.
J Colloid Interface Sci ; 638: 813-824, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791479

RESUMEN

In this work, the lattice tensile strain of nitrogen/fluorine co-doping ferroferric oxide (Fe3O4) nanocubes assembled on chrysanthemum tea-derived porous carbon is induced through a novel liquid nitrogen quenching treatment (named as TS-NF-FO/PCX-Y, TS: Tensile strain, NF: Nitrogen/Fluorine co-doping, FO: Fe3O4, PC: Porous carbon, X: The weight ratio of KOH/carbon, Y: The adding amount of porous carbon). Besides, the electrocatalytic activity influenced by the adding amount of porous carbon, the type of dopant, and the introduction of lattice tensile strain is systematically studied and explored. The interconnected porous carbon could improve electrical conductivity and prevent Fe3O4 nanocubes from aggregating. The induced nitrogen/fluorine could cause extrinsic defects and tailor the intrinsic electron state of the host materials. Lattice tensile strain could tailor the surface electronic structure of Fe3O4 via changing the dispersion of surface atoms and their bond lengths. Impressively, the designed TS-NF-FO/PC5-0.25 delivers a low overpotential of 207.3 ± 0.4 mV at 10 mA/cm2 and demonstrates desirable reaction dynamics. Density functional theory calculations illustrate that the electron structure and hydrogen adsorption free energy (ΔG*H) are optimized by the synergistic effect among porous carbon, nitrogen/fluorine co-doping and lattice tensile strain, thus promoting hydrogen evolution reaction (HER) catalytic activity. Overall, this work paves the way to unravel the enhancement mechanism of HER on transition metal oxide-based materials by electronic structure and phase composition modulation strategy.

9.
Inorg Chem ; 61(30): 11830-11836, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35852958

RESUMEN

In situ molecular transformation under hydrothermal conditions is a feasible method to introduce distinct organic ligands and suppress competitive reactions between different synthons. However, this strategy has not yet been explored for the preparation of polyoxometalate (POM)-encapsulated metal-organic frameworks (MOFs). In this work, we designed and prepared a new compound, [Co2(3,3'-bpy)(3,5'-bpp)(4,3'-bpy)](H2O)3[SiW12O40] (1) (4,3'-bpy = 4,3'-dipyridine, 3,5'-bpp = 3,5'-bis(pyrid-4-yl)pyridine, and 3,3'-bpy = 3,3'-bis(pyrid-4-yl) dipyridine), via an in situ ligand synthesis route. The compound shows a novel POM-encapsulated MOF structure with two pairs of left- and right-handed double helixes. These left- and right-handed helical chains further lead to triangular and rhombus-like channels, respectively. Moreover, the as-synthesized title compound shows superior electrocatalytic activity toward the hydrogen evolution reaction (HER) in 1 M KOH aqueous solution with a low overpotential and Tafel slope of 92 mV and 92.1 mV dec-1, respectively, under a current density of 10 cm-2. Also, the compound exhibits a high activity for the photocatalytic degradation of the dye rhodamine B. The excellent performance of the compound may be attributed to the synergistic effect between W and Co elements and the presence of encapsulated POMs. The title compound proves that it is possible to prepare multifunctional MOFs with POMs and transition metals showing HER activity and dye degradation activity.

10.
Nanotechnology ; 33(27)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35344938

RESUMEN

In this work, a kind of boron doped carbon spheres (B-CSs) was successfully synthesized utilizing maize starch as carbon source and boric acid as dopant via facile solvothermal method. The chemical structure of the prepared B-CSs was systemically investigated by TEM, FT-IR, XRD, XPS and EDS. The synthesized B-CSs feature spherical structure with average size of ∼254 nm and exhibit strong photoluminescence (PL) with maximum emission at a wavelength of ∼453 nm under irradiation at 350 nm, leading to a quantum yield of 6.2%. Furthermore, the aqueous pH and Cr(VI) has a significantly various impact on the PL intensity of B-CSs, which can be flexibly utilized as the PL sensor for detection aqueous pH and Cr(VI) in aqueous. Particularly, the B-CSs have a desirable sensitivity and selectivity for detection of Cr(VI) with a low detection limit of ∼0.34µmol l-1. Conclusively, our work provides a novel and dual-functional fluorescent sensor for detection of the pH and toxic metal ions in water environment.

11.
J Colloid Interface Sci ; 608(Pt 3): 2921-2931, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34799045

RESUMEN

The exploitation of efficient electrocatalyst is significantly important for degradation of refractory organic pollutants. Herein, a novel Ti/CoTiO3/Ce-PbO2 composite electrocatalyst (abbreviated as CTO/CP) is successfully constructed via facile consecutive immersion pyrolysis and electro-deposition method and then systematically characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and near infrared chemical imaging (NIR-CI). Importantly, the electrochemical measurements demonstrate that the CTO/CP possesses numerous prominent properties such as lower charge transfer resistance, larger electroactive area, higher oxygen evolution potential than those of the pristine Ti/CoTiO3 (CTO) and Ti/Ce-PbO2 (CP). Thereby, the CTO/CP exhibits an enhanced electrocatalytic degradation performance with the degradation efficiency as high as 90.0% and COD removal rate of 88.3% at 180 min for the optimal CTO/CP (denoted as 10 layers of CTO and 1 h electrodeposition of CP), in which the ·OH is the major reactive species. Additionally, the optimal CTO/CP also shows a higher ICE/ACE together with lower EEC and desirable stability, universal applicability for many different dyes and reusability. Overall, this work offers a promising approach for enhancing the electrocatalytic properties of CTO via introducing CP.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Electrodos , Oxidación-Reducción , Óxidos , Espectroscopía Infrarroja por Transformada de Fourier , Titanio , Contaminantes Químicos del Agua/análisis
12.
J Colloid Interface Sci ; 599: 577-585, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33971566

RESUMEN

Cobalt-based transition metal phosphides/sulfides have been viewed as promising candidates for supercapacitor (SCs) and hydrogen evolution reaction (HER) featured with their intrinsic merits. Nevertheless, the sluggish reaction kinetics and drastic volume expansion upon electrochemical process hinder their commercial application. In this work, the hollow/porous cobalt sulfide/phosphide based nanocuboids (C-CoP4 and CoS2 HNs) with superior specific surface area are achieved by employing a novel chemical etching-phosphatization/sulfuration strategy. The hollow/porous structure could offer rich active sites and shorten electrons/ions diffusion length. In virtue of their structural advantage, the obtained C-CoP4 and CoS2 HNs perform superior specific capacitance, fast charge/discharge rate and beneficial cycling stability. The advanced asymmetrical supercapacitors assembled by C-CoP4 and CoS2 HNs deliver exceptional energy density, respectively. Furthermore, when employed as hydrogen evolution reaction electrocatalysts, C-CoP4 and CoS2 HNs yield favorable electrocatalytic activity. These findings shed fundamental insight on the design of dual-functional transition metal phosphide/sulfide based materials for optimizing hydrogen evolution reaction and supercapacitor storage properties.

13.
Chem Commun (Camb) ; 56(96): 15177-15180, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33216080

RESUMEN

The first polyoxometalate (POM)-encapsulated twenty-four-nucleus organophosphorus-copper nanocage cluster organic framework has been constructed. Here, the phosphomolybdate POMs were incorporated into an octahedral nanocage cluster organic framework, and the resulting material exhibited highly efficient bifunctional electrochemical performance. The crystalline material showed a high specific capacitance of 366.3 F g-1 at a current density of 3 A g-1.

14.
Dalton Trans ; 49(29): 10203-10211, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32666972

RESUMEN

A simple continuous hydrothermal method was used to synthesize a NiFe2O4@Ni-Mn LDH/NF composite. The layered structure provides a large void to transfer the electron effectively, and the composite materials exhibit remarkable electrochemical performance including excellent specific capacitance (1265 F g-1 at 1 A g-1) and remarkable cycling stability (the specific capacitance remains at 80.9% after 5000 cycles). In addition, the asymmetric supercapacitor exhibits a high energy density of 96.2 W h kg-1 at a power density of 700 W kg-1, and there is an extraordinarily good cycling stability with a capacity retention rate of 92.5% after 4000 cycles. The outcomes indicate that the NiFe2O4@Ni-Mn LDH/NF composite electrode has potential application as a high-performance supercapacitor.

15.
Dalton Trans ; 48(34): 13026-13033, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31403634

RESUMEN

Mo-Based crystalline polyoxometalate-based metal-organic frameworks (POMOFs), namely, [CuIH2(C12H12N6)(PMo12O40)]·[(C6H15N)(H2O)2] (1) and [Cu(C12H12N6)4(PMoMoO39)] (2) (C12H12N6, 1,4-bis(triazol-1-ylmethyl) benzene, abbreviation btx) as promising capacitor electrode materials were synthesized by a hydrothermal reaction. Compound 1 consisted of two-dimensional (2D) lattice structures with free triethylamine (abbreviation, TEA) molecules and H2O molecules, and compound 2 showed a 3D host-guest structure, in which 1D polyoxometalate (POM) chains were encapsulated into a 3D Cu(ii)-btx metal-organic framework (MOF). The compound 1-based electrode showed much higher specific capacitance (249.0 F g-1 at 3 A g-1) than the 2-based one (154.5 F g-1 at 3 A g-1). Moreover, the specific capacitance of the 1-based electrode was not only higher than those of the majority of the reported POMOF materials as supercapacitors, but also higher than those of most state-of-the-art MOF-based and POM-based supercapacitor electrode materials. This superior capacitance performance of the 1-based electrode could be attributed to the high redox capacity and excellent electronic conductivity. More importantly, this work may open a new avenue for optimizing the performance of POMOF-based capacitor electrode materials.

16.
ACS Appl Mater Interfaces ; 11(23): 20845-20853, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117450

RESUMEN

Composites of polyoxometalate (POM)/metallacalixarene/graphene-based electrode materials not only integrate the superiority of the individual components perfectly but also ameliorate the demerits to some extent, providing a promising route to approach high-performance supercapacitors. Herein, first, we report the preparations, structures, and electrochemical performance of two fascinating POM-incorporated metallacalixarene compounds [Ag5(C2H2N3)6][H5 ⊂ SiMo12O40] (1) and [Ag5(C2H2N3)6][H5 ⊂ SiW12O40] (2); (C2H2N3 = 1 H-1,2,4-triazole). Single-crystal X-ray diffraction analyses illustrated that both 1 and 2 possess intriguing POM-sandwiched metallacalix[6]arene frameworks. Nevertheless, our investigations, including the electrochemical cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, reveal that the oxidation ability of the Keggin ions is a primary effect in electrochemical performance of these POM-incorporated metallacalixarene compounds. Namely, the electrodes containing Mo as metal atoms in the Keggin POM shows much higher capacitance than the corresponding W-containing ones. Moreover, compound 1@graphene oxide (GO) composite electrodes are fabricated and systematically explored for their supercapacitor performance. Thanks to the synergetic effects of GO and POM-incorporated metallacalixarenes, the compound 1@15%GO-based electrode exhibits the highest specific capacitance of up to 230.2 F g-1 (current density equal to 0.5 A g-1), which is superior to majority of the reported POM-based electrode materials.

17.
Dalton Trans ; 45(7): 3048-54, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26763181

RESUMEN

An oxidase-like mimic system based on facilely synthesized Ag@Ag3PO4 microcubes (Ag@Ag3PO4MCs) was designed and utilized to detect mercury ions with high selectivity and ultrasensitivity. Ag@Ag3PO4MCs with an average size of ca. 1.6 µm were synthesized by the reaction of [Ag(NH3)2](+) complex and Na2HPO4 and subsequent photoreduction under ultraviolet light. The as-prepared Ag@Ag3PO4MCs can effectively catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD) in the presence of dissolved oxygen in slightly acidic solution, exhibiting oxidase-like activities rather than peroxidase-like activity. Interestingly, the introduction of Ag nanoparticles (AgNPs) on the surfaces of Ag3PO4MCs can dramatically enhance the oxidase-like activities due to a synergistic effect between AgNPs and Ag3PO4MCs, as evidenced by the faster oxidation speed of TMB and OPD than that of native Ag3PO4MCs in the presence of dissolved oxygen. The enzyme kinetics can be well-explained by the Michaelis-Menten equation. As "poisoning" inhibitor, Hg(2+) ions can inhibit the enzyme reaction catalyzed by Ag3PO4MCs or Ag@Ag3PO4MCs. On the basis of this effect, a colorimetric Hg(2+) sensor was developed by the enzyme inhibition reaction of Ag3PO4MCs or Ag@Ag3PO4MCs. The excellent specific interaction of Hg-Ag or Hg(2+)-Ag(+) provides high selectivity for Hg(2+) over interfering metal ions. Meanwhile, the sensitivity of this sensor to Hg(2+) is extremely excellent with a limit of detection as low as 0.253 nM for Ag@Ag3PO4MCs. Considering the advantages of low detection limit, low cost, facile preparation, and visualization, the colorimetric Ag@Ag3PO4MCs sensor shows high promise for the testing of Hg(2+) in water samples.

18.
Dalton Trans ; 44(9): 3997-4002, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25612008

RESUMEN

A new silver(I)-alkynyl cluster with a [Eu(W5O18)2](9-) polyoxoanionic core of [Ag42{Eu(W5O18)2}((t)BuC≡C)28Cl4] [OH]·H2O (1) has been designed and synthesized. The [Eu(W5O18)2](9-) polyoxoanion acts as a template to induce the formation of the surrounding 42-core Ag(I) cage. Due to the hydrophobic silver(I)-alkynyl shell, 1 features an unusual fluorescence enhancement as compared to the precursor of the [Eu(W5O18)2](9-) polyoxoanionic core. Interestingly, the silver ions in the shell silver(I)-alkynyl cage can only be reduced to silver atoms by irradiation with high energy UV light (2 kW). Upon high UV irradiation, fluorescence quenching of 1 has been observed. Moreover, the solution fluorescence of 1 can be modulated by addition of S(2-) ions into the system, which also leads to the fluorescence quenching phenomenon. The successful synthesis of 1 demonstrates a new route to the detection of high energy UV irradiation or S(2-) ions by elaborate design of fluorescence quenching of silver(I)-alkynyl clusters.


Asunto(s)
Europio/química , Plata/química , Compuestos de Tungsteno/química , Europio/efectos de la radiación , Fluorescencia , Plata/efectos de la radiación , Compuestos de Tungsteno/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...