Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Divers ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150608

RESUMEN

To address the urgent need for new antifungal agents, a collection of novel pyrazole carboxamide derivatives incorporating a benzimidazole group were innovatively designed, synthesized, and evaluated for their efficacy against fungal pathogens. The bioassay results revealed that the EC50 values for the compounds A7 (3-(difluoromethyl)-1-methyl-N-(1-propyl-1H-benzo[d]imidazol-2-yl)-1H-pyrazole-4-carboxamide) and B11 (N-(1-(4-chlorobenzyl)-1H-benzo[d]imidazol-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide) against B. cinerea were notably low to 0.79 µg/mL and 0.56 µg/mL, respectively, demonstrating the potency comparable to that of the control fungicide boscalid, which has an EC50 value of 0.60 µg/mL. Noteworthy is the fact that in vivo tests demonstrated that A7 and B11 showed superior protective effects on tomatoes and strawberries against B. cinerea infection when juxtaposed with the commercial fungicide carbendazim. The examination through scanning electron microscopy revealed that B11 notably alters the morphology of the fungal mycelium, inducing shrinkage and roughening of the hyphal surfaces. To elucidate the mechanism of action, the study on molecular docking and molecular dynamics simulations was conducted, which suggested that B11 effectively interacts with crucial amino acid residues within the active site of succinate dehydrogenase (SDH). This investigation contributes a novel perspective for the structural design and diversification of potential SDH inhibitors, offering a promising avenue for the development of antifungal therapeutics.

2.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38720452

RESUMEN

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Fungicidas Industriales , Oximas , Pirazoles , Succinato Deshidrogenasa , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/metabolismo , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Relación Estructura-Actividad , Oximas/química , Oximas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Rhizoctonia/efectos de los fármacos , Éteres/química , Éteres/farmacología , Estructura Molecular
3.
J Agric Food Chem ; 71(24): 9266-9279, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294885

RESUMEN

Aiming to develop novel antifungal agents with a distinctive molecular scaffold targeting succinate dehydrogenase (SDH), 24 N'-phenyl-1H-pyrazole-4-sulfonohydrazide derivatives were first devised, synthesized, and verified by 1H NMR, 13C NMR, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction analysis. The bioassays revealed that the target compounds possessed highly efficient and broad-spectrum antifungal activities against four tested plant pathogenic fungi Rhizoctonia solani (R. solani), Botrytis cinerea, Fusarium graminearum, and Alternaria sonali. Strikingly, compound B6 was assessed as the selective inhibitor against R. solani, with an in vitro EC50 value (0.23 µg/mL) that was similar to that of thifluzamide (0.20 µg/mL). The in vivo preventative effect of compound B6 (75.76%) at 200 µg/mL against R. solani was roughly comparable to thifluzamide (84.31%) under the same conditions. The exploration of morphological observations indicated that compound B6 could strongly damage the mycelium morphology, obviously increase the permeability of the cell membrane, and dramatically increase the number of mitochondria. Compound B6 also significantly inhibited SDH enzyme activity with an IC50 value of 0.28 µg/mL, and its fluorescence quenching dynamic curves were similar to that of thifluzamide. Molecular docking and molecular dynamics simulations demonstrated that compound B6 could strongly interact with similar residues around the SDH active pocket as thifluzamide. The present study revealed that the novel N'-phenyl-1H-pyrazole pyrazole-4-sulfonohydrazide derivatives are worthy of being further investigated as the promising replacements of traditional carboxamide derivatives targeting SDH of fungi.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Antifúngicos/química , Relación Estructura-Actividad , Succinato Deshidrogenasa , Simulación del Acoplamiento Molecular , Rhizoctonia , Pirazoles/farmacología , Pirazoles/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA