Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Asian J Androl ; 22(6): 583-589, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32859869

RESUMEN

Prohibitin (PHB), an evolutionarily conserved mitochondrial inner membrane protein, is highly expressed in cells that require strong mitochondrial function. Recently, we demonstrated that the deletion of Phb in spermatocytes results in impaired mitochondrial function. In addition, PHB expression in the mitochondrial sheath of human sperm has a significantly negative correlation with mitochondrial reactive oxygen species levels, but a positive one with mitochondrial membrane potential and sperm motility. These results suggest that mitochondrial PHB expression plays a role in sperm motility. However, the mechanism of PHB-mediated regulation of sperm motility remains unknown. Here, we demonstrate for the first time that PHB interacts with protein kinase B (AKT) and exists in a complex with phospho-PHB (pT258) and phospho-AKT in the mitochondrial sheath of murine sperm, as determined using colocalization and coimmunoprecipitation assays. After blocking AKT activity using wortmannin (a phosphatidylinositol 3-kinase [PI3K] inhibitor), murine sperm have significantly ( P < 0.05) decreased levels of phospho-PHB (pT258) and the total and progressive motility. Furthermore, significantly ( P < 0.05) lower levels of phospho-PI3K P85 subunit α+γ (pY199 and pY467) and phospho-AKT (pS473; pT308) are found in sperm from infertile asthenospermic and oligoasthenospermic men compared with normospermic subjects, which suggest a reduced activity of the PI3K/AKT pathway in these infertile subjects. Importantly, these sperm from infertile subjects also have a significantly ( P < 0.05) lower level of phospho-PHB (pT258). Collectively, our findings suggest that the interaction of PHB with AKT in the mitochondrial sheath is critical for sperm motility, where PHB phosphorylation (pT258) level and PI3K/AKT activity are key regulatory factors.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras/metabolismo , Motilidad Espermática , Adulto , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Prohibitinas , Proteínas Represoras/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiología
2.
J Cell Mol Med ; 21(1): 121-129, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558591

RESUMEN

Prohibitin (PHB), a major mitochondrial membrane protein, has been shown earlier in our laboratoryto regulate sperm motility via an alteration in mitochondrial membrane potential (MMP) in infertile men with poor sperm quality. To test if PHB expression is associated with sperm mitochondrial superoxide (mROS) levels, here we examined sperm mROS levels, high MMP and lipid peroxidation in infertile men with poor sperm motility (asthenospermia, A) and/or low sperm concentrations (oligoasthenospermia, OA). The diaphorase-type activity of sperm mitochondrial complex I (MCI) and PHB expression were also determined. We demonstrate that mROS and lipid peroxidation levels are significantly higher in sperm from A and OA subjects than in normospermic subjects, whereas high MMP and PHB expression are significantly lower. A positive correlation between mROS and lipid peroxidation and a negative correlation of mROS with PHB expression, high MMP, and sperm motility were found in these subjects. The finding of similar diaphorase-type activity levels of sperm MCI in the three groups studied suggests that the catalytic subunits of MCI in the matrix arm may produce mROS on its own. There may be a dysfunction of electron transport at MCI associated with decreased expression of PHB in sperm with poor quality. We conclude that mROS level is increased and associated with decreased PHB expression, and it may regulate sperm motility via increases in low MMP and lipid peroxidation. This is the first report on the involvement of PHB in human sperm motility loss associated with increased generation of mROS at MCI.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Represoras/farmacología , Espermatozoides/efectos de los fármacos , Superóxidos/metabolismo , Adulto , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Prohibitinas , Especies Reactivas de Oxígeno/metabolismo , Recuento de Espermatozoides/métodos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA