Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1275865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419639

RESUMEN

Introduction: The dietary protein level plays a crucial role in maintaining the equilibrium of rumen microbiota in yaks. To explore the association between dietary protein levels, rumen microbiota, and muscle metabolites, we examined the rumen microbiome and muscle metabolome characteristics in yaks subjected to varying dietary protein levels. Methods: In this study, 36 yaks were randomly assigned to three groups (n = 12 per group): low dietary protein group (LP, 12% protein concentration), medium dietary protein group (MP, 14% protein concentration), and high dietary protein group (HP, 16% protein concentration). Results: 16S rDNA sequencing revealed that the HP group exhibited the highest Chao1 and Observed_species indices, while the LP group demonstrated the lowest. Shannon and Simpson indices were significantly elevated in the MP group relative to the LP group (P < 0.05). At the genus level, the relative abundance of Christensenellaceae_R-7_group in the HP group was notably greater than that in the LP and MP groups (P < 0.05). Conversely, the relative abundance of Rikenellaceae_RC9_gut_group displayed an increasing tendency with escalating feed protein levels. Muscle metabolism analysis revealed that the content of the metabolite Uric acid was significantly higher in the LP group compared to the MP group (P < 0.05). The content of the metabolite L-(+)-Arabinose was significantly increased in the MP group compared to the HP group (P < 0.05), while the content of D-(-)-Glutamine and L-arginine was significantly reduced in the LP group (P < 0.05). The levels of metabolites 13-HPODE, Decanoylcarnitine, Lauric acid, L-(+)-Arabinose, and Uric acid were significantly elevated in the LP group relative to the HP group (P < 0.05). Furthermore, our observations disclosed correlations between rumen microbes and muscle metabolites. The relative abundance of NK4A214_group was negatively correlated with Orlistat concentration; the relative abundance of Christensenellaceae_R-7_group was positively correlated with D-(-)-Glutamine and L-arginine concentrations. Discussion: Our findings offer a foundation for comprehending the rumen microbiome of yaks subjected to different dietary protein levels and the intimately associated metabolic pathways of the yak muscle metabolome. Elucidating the rumen microbiome and muscle metabolome of yaks may facilitate the determination of dietary protein levels.

2.
Free Radic Biol Med ; 209(Pt 1): 70-83, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37806597

RESUMEN

The gut microbiota plays a crucial role in maintaining host nutrition, metabolism, and immune homeostasis, particularly in extreme environmental conditions. However, the regulatory mechanisms of the gut microbiota in animal organisms hypobaric hypoxia exposure require further study. We conducted a research by comparing SD rats treated with an antibiotic (ABX) cocktail and untreated SD rats that were housed in a low-pressure oxygen chamber (simulating low pressure and hypoxic environment at 6000 m altitude) for 30 days. After the experiment, blood, feces, and lung tissues from SD rats were collected for analysis of blood, 16S rRNA amplicon sequencing, and non-targeted metabolomics. The results demonstrated that the antibiotic cocktail-treated SD rats exhibited elevated counts of neutrophil (Neu) and monocyte (Mon) cells, an enrichment of sulfate-reducing bacteria (SBC), reduced levels of glutathione, and accumulated phospholipid compounds. Notably, the accumulation of phospholipid compounds, particularly lysophosphatidic acid (LPA), lipopolysaccharide (LPS), and lysophosphatidylcholine (LPC), along with the aforementioned changes, contributed to heightened oxidative stress and inflammation in the organism. In addition, we explored the resistance mechanisms of SD rats in low-oxygen and low-pressure environments and found that increasing the quantity of the Prevotellaceae and related beneficial bacteria (especially Lactobacillus) could reduce oxidative stress and inflammation. These findings offer valuable insights into enhancing the adaptability of low-altitude animals under hypobaric hypoxia exposure.


Asunto(s)
Hipoxia , Estrés Oxidativo , Ratas , Animales , ARN Ribosómico 16S/genética , Ratas Sprague-Dawley , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Oxígeno , Inflamación , Fosfolípidos
3.
Front Microbiol ; 14: 1247251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37700865

RESUMEN

Yak (Bos grunniens) is an important economic animal species on the Qinghai-Tibet Plateau. Yaks grazed in the cold season often suffer from nutritional stress, resulting in low production performance. This situation can be improved by properly feeding the grazing yaks in the cold season; however, there is still little information about the effect of different feeding levels on the intestinal microflora and metabolites of yaks. Therefore, this study aimed to explore the effect of feeding different doses of concentrate supplements on rumen bacterial communities and metabolites in grazing yaks during the cold season. Feed concentrate supplementation significantly improved the production performance and rumen fermentation status of grazing yaks during the cold season, and switched the type of ruminal fermentation from acetic acid fermentation to propionic acid fermentation. Ruminal fermentation parameters and ruminal bacterial abundance correlated strongly. At the phylum level, the abundance of Firmicutes increased with increasing concentrate supplementation, while the opposite was true for Bacteroidota. At the genus level, the abundance of Christensenellaceae_R-7_group, NK4A214_group, Ruminococcus, norank_f__Eubacterium_coprostanoligenes_group, norank_f__norank_o__ Clostridia_UCG-014, Lachnospiraceae_NK3A20_group, Acetitomaculum, and Family_XIII_AD3011_group increased with increasing concentrate supplementation, while the abundance of Rikenellaceae_RC9_gut_ group decreased. Dietary concentrate supplementation altered the concentration and metabolic mode of metabolites in the rumen, significantly affecting the concentration of metabolites involved in amino acid and derivative metabolism (e.g., L-aspartic acid, L-glutamate, and L-histidine), purine metabolism (e.g., guanine, guanosine, and hypoxanthine), and glycerophospholipid metabolism (e.g., phosphatidate, phosphatidylcholine, and phosphocholine), and other metabolic pathways. The strong correlation between yak rumen microorganisms and metabolites provided a more comprehensive understanding of microbial community composition and function. This study showed significant changes in the composition and abundance of bacteria and metabolites in the rumen of cool season grazing yaks fed with concentrate supplements. Changes in ruminal fermentation parameters and metabolite concentration also showed a strong correlation with ruminal bacterial communities. These findings will be helpful to formulate supplementary feeding strategies for grazing yaks in the cold season from the perspective of intestinal microorganisms.

4.
Microorganisms ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630524

RESUMEN

A relatively stable microbial ecological balance system in the rumen plays an important role in rumen environment stability and ruminant health maintenance. No studies have reported how rumen fluid transplantation (RFT) affects the composition of rumen microorganisms and yak growth performance. In this experiment, we transplanted fresh rumen fluid adapted to house-feeding yaks to yaks transitioned from natural pastures to house-feeding periods to investigate the effects of rumen fluid transplantation on rumen microbial community regulation and production performance. Twenty yaks were randomly divided into the control group (CON; n = 10) and the rumen fluid transplantation group (RT; n = 10). Ten yaks that had been adapted to stall fattening feed in one month were selected as the rumen fluid donor group to provide fresh rumen fluid. Ruminal fluid transplantation trials were conducted on the 1st, 3rd, and 5th. Overall, 1 L of ruminal fluid was transplanted to each yak in the RT and CON group. The formal trial then began with both groups fed the same diet. After this, growth performance was measured, rumen fluid was collected, and rumen microbial composition was compared using 16s rRNA sequencing data. The results showed that rumen fluid transplantation had no significant effect on yak total weight gain or daily weight gain (p > 0.05), and feed efficiency was higher in the RT group than in the CON group at 3 months (treatment × month: p < 0.01). Ruminal fluid transplantation significantly affected rumen alpha diversity (p < 0.05). Up to day 60, the RT group had significantly higher OTU numbers, Shannon diversity, and Simpson homogeneity than the CON group. Principal coordinate analysis showed that the rumen microbiota differed significantly on days 4 and 7 (p < 0.05). Bacteroidota, Firmicutes, Proteobacteria, and Spirochaetes were the most abundant phyla in the rumen. The relative abundances of Bacteroidota, Proteobacteria, and Spirochaetes were lower in the RT group than in the CON group, with a decrease observed in Bacteroidota in the RT group on days 7 and 28 after rumen fluid transplantation (p = 0.013), while Proteobacteria showed a decreasing trend in the CON group and an increasing trend in RT; however, this was only at day 4 (p = 0.019). The relative abundance of Firmicutes was significantly higher in the RT group than in the CON group on days 4, 7, and 28 (p = 0.001). Prevotella and Rikenellaceae_RC9_gut_group were the predominant genera. In conclusion, our findings suggest that rumen fluid transplantation improves yak growth performance and rumen microbial reshaping. The findings of this study provide new insights into yak microbial community transplantation and a reference for improving feed efficiency in the yak industry.

5.
Front Microbiol ; 13: 957152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246255

RESUMEN

Ruminal microflora is closely correlated with the ruminant's diet. However, information regarding the effect of high concentrate diets on rumen microflora in yaks is lacking. In the current study, 24 healthy male yaks were randomly assigned to two groups, each fed with different diets: less concentrate (LC; concentrate: coarse = 40: 60) and high concentrate (HC; concentrate: coarse = 80: 20) diets. Subsequently, a 21-day feeding trial was performed with the yaks, and rumen fluid samples were collected and compared using 16 s rRNA sequencing. The results showed that NH3-N, total VFA, acetate, butyrate, isobutyrate, and isovalerate were significantly higher in the HC group than that in the LC group (p < 0.05), while microbial diversity and richness were significantly lower in the HC group (p < 0.05). Principal coordinate analysis indicated that rumen microflora was significantly different in LC and HC groups (p < 0.05). In the rumen, phyla Firmicutes and Bacteroidota were the most abundant bacteria, with Firmicutes being more abundant, and Bacteroidota being less abundant in the HC group than those found in the LC group. Christensenellaceae_R-7_group and Prevotella are the highest abundant ones at the genus level. The relative abundance of Acetitomaculum, Ruminococcus, and Candidatus_Saccharimonas were significantly higher in the HC group than that in the LC group (p < 0.05), while the relative abundance of Olsenella was significantly lower in the HC group than in the LC group (p < 0.05). Compared to the LC group, the relative abundance of Prevotella, Ruminococcus, and Candidatus_Saccharimonas was significantly higher in the HC group. The relative abundances of Prevotella, Prevotellaceae_UCG-003, Olsenella, Ruminococcus, Acetitomaculum, Candidatus_Saccharimonas, and NK4A214_group were correlated with ruminal fermentation parameters (p < 0.05). Furthermore, PICRUSt 2 estimation indicated that microbial genes associated with valine, leucine, and isoleucine biosynthesis were overexpressed in the rumen microflora of yaks in the HC group (p < 0.05). Conclusively, our results suggest that high concentrate diets affect the microflora composition and fermentation function in yak rumen. The present findings would provide new insights into the health of yaks under high concentrate feeding conditions and serve as a potent reference for the short-term fattening processes of yaks.

6.
Animals (Basel) ; 12(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36139194

RESUMEN

(1) Background: This study aimed to investigate the effects of different dietary concentrate to roughage ratios on growth performance and fecal microbiota composition of yaks by 16S rRNA gene sequencing. (2) Methods: In the present study, three diets with different dietary forage-to-concentrate ratios (50:50, 65:35, and 80:20) were fed to 36 housed male yaks. (3) Results: The result shows that Final BW, TWG, and ADG were higher in the C65 group than in the C50 and C80 groups, but the difference was not significant (p > 0.05). DMI in the C65 group was significantly higher than in the other two groups (p < 0.05). The DMI/ADG of the C65 group was lower than that of the other two groups, but the difference was insignificant (p > 0.05). At the phylum level, Firmicutes were the most abundant in the C65 group, and the relative abundance of Bacteroidetes was lower in the C65 group than in the other two groups. At the genus level, the relative abundances of Ruminococcaceae_UCG_005, Romboutsia, and Christensenellaceae_R-7 were higher in the C56 group than in the C50 and C80 groups. The relative abundance of Lachnospiraceae_NK3A20 and Rikenellaceaewas_RC9_gut is lower in the C65 group, but the difference was insignificant (p > 0.05). At KEGG level 2, the relative abundance of lipid metabolism and energy metabolism were lowest in the C50 group, and both showed higher relative abundance in the C65 group. (4) Conclusions: In conclusion, the structure of fecal microbiota was affected by different concentrate-to-forage ratios. We found that feeding diets with a concentrate-to-forage ratio of 65:35 improved yaks' growth and energy metabolism.

7.
Front Nutr ; 9: 927206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911107

RESUMEN

Changes in dietary composition affect the rumen microbiota in ruminants. However, information on the effects of dietary concentrate-to-forage ratio changes on yak rumen bacteria and metabolites is limited. This study characterized the effect of three different dietary concentrate-to-forage ratios (50:50, C50 group; 65:35, C65 group; 80:20, C80 group) on yak rumen fluid microbiota and metabolites using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) analyses. Rumen fermentation parameters and the abundance of rumen bacteria were affected by changes in the dietary concentrate-to-forage ratio, and there was a strong correlation between them. At the genus level, higher relative abundances of norank_f__F082, NK4A214_group, Lachnospiraceae_NK3A20_group, Acetitomaculum, and norank_f__norank_o__Clostridia_UCG-014 were observed with a high dietary concentrate-to-forage ratio (P < 0.05). Combined metabolomic and enrichment analyses showed that changes in the dietary concentrate-to-forage ratio significantly affected rumen metabolites related to amino acid metabolism, protein digestion and absorption, carbohydrate metabolism, lipid metabolism, and purine metabolism. Compared with the C50 group, 3-methylindole, pantothenic acid, D-pantothenic acid, and 20-hydroxy-leukotriene E4 were downregulated in the C65 group, while spermine and ribose 1-phosphate were upregulated. Compared to the C50 group, Xanthurenic acid, tyramine, ascorbic acid, D-glucuronic acid, 6-keto-prostaglandin F1a, lipoxin B4, and deoxyadenosine monophosphate were upregulated in the C80 group, while 3-methylindole and 20-hydroxy-leukotriene E4 were downregulated. All metabolites (Xanthurenic acid, L-Valine, N-Acetyl-L-glutamate 5-semialdehyde, N-Acetyl-L-glutamic acid, Tyramine, 6-Keto-prostaglandin F1a, Lipoxin B4, Xanthosine, Thymine, Deoxyinosine, and Uric acid) were upregulated in the C80 group compared with the C65 group. Correlation analysis of microorganisms and metabolites provided new insights into the function of rumen bacteria, as well as a theoretical basis for formulating more scientifically appropriate feeding strategies for yak.

8.
Front Microbiol ; 13: 964564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033892

RESUMEN

To improve the rumen fermentation function and growth performance of yaks (Bos grunniens), better understanding of the effect of different dietary forage to concentrate ratios on rumen microbiota and metabolites is needed. In the present study, three diets with different dietary forage to concentrate ratios (50:50, 65:35, and 80:20) were fed to 36 housed male yaks. The changes in the distribution of rumen microorganisms and metabolites and the interactions between them were studied by 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS). The diversity and richness of microorganisms in the rumen varied according to diet. The most abundant phyla were Firmicutes and Bacteroidetes. Firmicutes was the most abundant in the C50 group, and the relative abundance of Bacteroidetes was significantly lower in the C65 group than in the C80 group (p < 0.05). The Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Methanobrevibacter had the highest relative abundances at the genus level. Among them, Christensenellace_R-7_group had the highest relative abundance in the C50 group. The Rikenellaceae_RC9_gut_group was significantly abundant in the C80 group compared with the C50 group. The Methanobrevibacter content was higher in the C65 group than in the other two groups. Both the concentration and metabolic pathways of rumen metabolites were influenced by the dietary concentrate ratio; lipids, lipid-like molecules, organic acid metabolites, and organic oxide-related metabolites differed between the groups. Significant changes were found for six metabolic pathways, including arginine and proline metabolism; glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism; arginine biosynthesis; glycerophospholipid metabolism; glycerolipid metabolism; and nitrogen metabolism.

9.
Animals (Basel) ; 12(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35681862

RESUMEN

This study aimed to evaluate the effects of concentrate supplementation on the growth performance, serum biochemical parameters, rumen fermentation, and bacterial community composition of grazing yaks during the warm season. Eight male yaks (body weight, 123.96 ± 7.43 kg; 3-years) were randomly allocated to two treatments groups: grazing (n = 4, GY) and concentrate supplement group (n = 4, GYS). Concentrate supplementation increased the average daily gain (ADG) (p < 0.05). Glucose (GLU), total protein (TP), and aspartate aminotransferase (AST) serum concentrations were significantly higher in the GYS group than in the GY group (p < 0.05). Ammonia-N, MCP: microbial protein, and total volatile fatty acid concentrations were significantly higher in the GYS group than in the GY group (p < 0.01), whereas the pH and acetate: propionate values were significantly decreased (p < 0.01). The relative abundance of Firmicutes in the rumen fluid was significantly higher in the GYS group than in the GY group (p < 0.01). At the genus level, the relative abundances of Succiniclasticum, Prevotellaceae_UCG_003, Prevotellaceae_UCG_005, and Ruminococcus_1 were significantly greater in the GY group than in the GYS group (p < 0.01). In conclusion, concentrate supplementation improved yaks' growth potential during the warm season, improved ruminal fermentation, and altered core bacteria abundance.

10.
Front Vet Sci ; 9: 1027967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619966

RESUMEN

With diversification of yak breeding, it is important to understand the effects of feed type on the rumen, especially microbiota and metabolites. Due to the unique characteristics of yak, research on rumen microbes and metabolites is limited. In this study, the effects of two diet types on rumen eukaryotic microflora and metabolites were evaluated using the Illumina MiSeq platform and liquid chromatography-mass spectrometry (LC-MS). All identified protozoa belonged to Trichostomatia. At the genus level, the relative abundance of Metadinium and Eudiplodinium were significantly (p < 0.05) higher in the roughage group than that of concentrate group, while the concentrate group harbored more Isotricha. Ascomycota, Basidiomycota, and Neocallimastigomycota were the main fungal phyla, and the Wallemia, Chordomyces, Chrysosporium, Cladosporium, Scopulariopsis, and Acremonium genera were significantly (p < 0.05) more abundant in the roughage group than the concentrate group, while the concentrate group harbored more Aspergillus, Neocallimastix, Thermoascus, and Cystofilobasidium (p < 0.05). Metabolomics analysis showed that feed type significantly affected the metabolites of rumen protein digestion and absorption (L-proline, L-phenylalanine, L-tryosine, L-leucine, L-tryptophan, and ß-alanine), purine metabolism (hypoxanthine, xanthine, guanine, guanosine, adenosine, and adenine), and other metabolic pathway. Correlation analysis revealed extensive associations between differential microorganisms and important metabolites. The results provide a basis for comprehensively understanding the effects of feed types on rumen microorganisms and metabolites of yaks. The findings also provide a reference and new directions for future research.

11.
J Vet Res ; 65(1): 109-115, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33817403

RESUMEN

INTRODUCTION: Inflammation is one of the main causes of impaired health in livestock and some of its processes weaken animal productivity and impact human health. The present study was conducted to evaluate the effect of echinacea extract (cichoric acid - CA) on yak peripheral blood mononuclear cells (PBMCs), inflammatory-related factors, and the toll-like receptor (TLR)4 signalling pathway induced by lipopolysaccharide (LPS) in these PBMCs. MATERIAL AND METHODS: Yak PBMCs were co-cultured with LPS and CA in vitro. The proliferative activity of cells was detected using the cell-counting kit-8 method, the optimal stimulation concentration of LPS was selected, the effect of CA on the content of inflammation-related factors was evaluated using an ELISA kit, and the mRNA expression of these factors was detected by RT-PCR. RESULTS: CA inhibited the inflammatory response of yak PBMCs induced by LPS. CA inhibited gene and protein expression of key nodes of the TLR4 signalling pathway in yak PBMCs. CONCLUSION: It is suggested that CA has anti-inflammatory and immunomodulatory effects on yak PBMCs via the TLR4 pathway.

12.
Anim Sci J ; 91(1): e13489, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33314599

RESUMEN

Enteric methane (CH4 ) emission in cattle generally decreases by approximately 1 g/g dry matter intake (DMI) with an increase in dietary lipids of 10 g/kg dry matter (DM). The effect of dietary lipids on CH4 emission in yaks has not been reported and is the subject of this study. Four Datong yaks were used in a 4 × 4 Latin-square design in which the four treatments included restricted intakes of double-low rapeseed differing in form and lipid (ether extract-EE) content: (a) rapeseed meal (EE 32.6 g/kg DM); (b) rapeseed meal and rapeseed cake (EE 45.8 g/kg DM); (c) rapeseed meal and whole cracked rapeseed (EE 54.5 g/kg DM) and (d) rapeseed meal and rapeseed oil (EE 62.7 g/kg DM). The digestibility of feed components did not differ among treatments. The ruminal total volatile fatty acids (p = .082) and acetic acid (p = .062) concentrations tended to be lowest in yaks consuming the diet with highest lipid content. In addition, CH4 production was lowest in this group (p = .004), and declined by 1.75 g/g DMI per 10 g/kg DM reduction in dietary lipid content, a rate substantially faster than in cattle.


Asunto(s)
Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Brassica napus/química , Bovinos/metabolismo , Dieta/veterinaria , Grasas de la Dieta/análisis , Gases , Tracto Gastrointestinal/metabolismo , Metano/metabolismo , Animales , Tibet
13.
Front Microbiol ; 11: 994, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582049

RESUMEN

The present study aims to evaluate the effects of different early weaning paradigms, which supplied with extra alfalfa hay, or starter feeding, or both alfalfa hay and starter feeding, along with the milk replacer, on the gastrointestinal microbial community, growth, and immune performance of yak calves. Twenty 30-day-old male yak calves were randomly assigned to four groups, including the control (CON), alfalfa hay (A), starter feeding (S), and starter plus alfalfa hay (SA) groups. The gastrointestinal microbial colonization, the gastrointestinal development and function, and the growth and immune performance of all the yak calves were separately measured. Supplementation with alfalfa and starter feeding during the pre-weaning period significantly increased body weight, body height, body length, and chest girth. The significantly improved rumen fermentation and promoted intestinal digestion-absorption function in alfalfa and starter feeding groups, including the identified significantly increased concentrations of ruminal total volatile fatty acid (VFA); the significantly increased concentrations and proportions of acetate, butyrate, and isovalerate; the increased α-amylase activities in the duodenum, jejunum, and ileum; the increased papillae length and width of rumen epithelium and rumen wall thickness; and the increased villus height and crypt depth of the duodenum, jejunum, and ileum, could all contribute to promote the growth of calves. These significant improvements on rumen fermentation and intestinal digestion-absorption function could be further attributed to the increased proliferation of starch-decomposing, and cellulose- or hemicellulose-decomposing bacteria identified in the rumen, jejunum, and ileum. Furthermore, based on the expression of intestinal inflammatory cytokines and the rumen epithelial RNA sequencing results, alfalfa supplementation reduced the occurrence of ruminal and intestinal inflammation, whereas starter feeding supplementation was mainly beneficial to the differentiation of immune cells and the improved immune function. Meanwhile, the significantly altered relative abundances of genera in the SA group, including increased relative abundance of Limnobacter, Escherichia/Shigella, and Aquabacterium in the rumen and increased relative abundance of Coprococcus, Pseudobutyrivibrio, Flavonifractor, Synergistes, and Sutterella in jejunum, were able to reduce gastrointestinal inflammation and enhance the immune function, which enhanced the immune function of the yak calves fed with alfalfa and starter feeding. Overall, milk replacer supplemented with alfalfa and starter feeding during the pre-weaning period could alter gastrointestinal microbiota and then benefit the gastrointestinal development, digestion-absorption function, growth, and immune performance of the yak calves.

14.
Front Microbiol ; 11: 485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308649

RESUMEN

Understanding the altered gastrointestinal microbiota is important to illuminate effects of maternal grazing (MG: maternally nursed and grazed) and barn feeding (BF: supplied milk replacer, starter feed, and alfalfa hay) on the performance and immune function of yak calves. Compared with the MG group, the significantly increased body weight, body height, body length, chest girth, and organ development of liver, spleen, and thymus were identified in the BF group, which were resulted from the significantly increased dry matter intake, increased concentrations of propionate, butyrate, isobutyrate, and valerate, increased ruminal pectinase, duodenal α-amylase, jejunal α-amylase and trypsin, and ileal trypsin, and promoted gastrointestinal epithelial development. Furthermore, genera of Sharpea, Sphingomonas, Atopobium, Syntrophococcus, Clostridium_XIVb, Acinetobacter, Oscillibacter, Dialister, Desulfovibrio, Bacteroides, Lachnospiracea_incertae_sedis, and Clostridium_sensu_stricto, which were involved in utilization of non-fibrous carbohydrate and further beneficial to improve the gastrointestinal digestion, development, and immune functions, were significantly increased in the BF group. Meanwhile, the significantly enhanced ruminal epithelial immune functions and intestinal immune functions based on enhanced ruminal immune related pathway, duodenal IL-1ß, jejunal IL-1ß, IL-2, TNF-α, and IFN-γ, and ileal IL-1ß were identified in the BF group, which also may induced by the increased abundance of gastrointestinal microbiota. Overall, barn feeding significantly increased the diversity of species and abundance of microbes which used different carbohydrates and further benefit to the growth and immune function of yak calves.

15.
Anim Sci J ; 90(9): 1177-1184, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31347239

RESUMEN

Heat-treated rapeseed was supplemented to indoor fed yaks in winter to test the effect on dry matter intake (DMI), body mass change, and meat quality. Sixteen 3-year-old yak steers (124 ± 15.3 kg) were divided randomly into two groups and were offered either heat-treated rapeseed (HTR) or rapeseed meal (CONT). The yaks were allowed 14 days for adjustment and measurements were made over 120 d. There was no difference in DMI between groups (p = 0.67), but average daily gain tended to be higher (p < 0.056) and feed to gain ratio tended to be lower (p = 0.050) in HTR than in CONT yaks. Meat from HTR yaks was more tender (p = 0.006), had higher intramuscular fat (p = 0.013), and had lower cholesterol content (p = 0.009) than from CONT yaks. In addition, the atherogenic index was lower (0.37 vs. 0.43; p = 0.049), the PUFA:SFA ratio was higher (0.55 vs. 0.37; p = 0.049), and the n-6:n-3 (n-6 PUFA to n-3 PUFA) ratio was lower (2.76 vs. 4.78; p = 0.003) in HTR than in CONT yaks, which all favoured the HTR yaks. Meat from HTR yaks met human health standards of a PUFA:SFA ratio of above 0.4 and n-6:n-3 ratio of less than 4, whereas meat from CONT yaks just missed these standards.


Asunto(s)
Brassica napus , Bovinos , Dieta/veterinaria , Animales , Bovinos/crecimiento & desarrollo , Suplementos Dietéticos , Carne/análisis , Valor Nutritivo
16.
Front Microbiol ; 10: 1116, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191470

RESUMEN

Current knowledge about the relationships between ruminal bacterial communities and metabolite profiles in the yak rumen is limited. This is due to differences in the nutritional and metabolic features between yak and other ordinary cattle combined with difficulties associated with farm-based research and a lack of technical guidance. A comprehensive analysis of the composition and alterations in ruminal metabolites is required to advance the development of modern yak husbandry. In the current study, we characterized the effect of feed type on the ruminal fluid microbiota and metabolites in yak using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS). Bacteroidetes and Firmicutes were the predominant bacterial phyla in the yak rumen. At the genus level, the relative abundance of Bacteroidales BS11 gut group, Prevotellaceae UCG-003, Ruminococcaceae UCG-011, Bacteroidales RF16 group and Ruminococcaceae UCG-010 was significantly (P < 0.01) higher in the forage group compared to that in the concentrate group, while the concentrate group harbored higher proportions of Bacteroidales S24-7 group, Ruminococcaceae NK4A214, Succiniclasticum and Ruminococcus 2. Yak rumen metabolomics analysis combined with enrichment analysis revealed that feed type altered the concentrations of ruminal metabolites as well as the metabolic pattern, and significantly (P < 0.01) affected the concentrations of ruminal metabolites involved in protein digestion and absorption (e.g., L-arginine, ornithine, L-threonine, L-proline and ß-alanine), purine metabolism (e.g., xanthine, hypoxanthine, deoxyadenosine and deoxyadenosine monophosphate) and fatty acid biosynthesis (e.g., stearic acid, myristic acid and arachidonic acid). Correlation analysis of the association of microorganisms with metabolite features provides us with a comprehensive understanding of the composition and function of microbial communities. Associations between utilization or production were widely identified between affected microbiota and certain metabolites, and these findings will contribute to the direction of future research in yak.

17.
Front Microbiol ; 8: 179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28223980

RESUMEN

The aim of this study was to determine the microbial community composition in the rumen of yaks under different feeding regimes. Microbial communities were assessed by sequencing bacterial and archaeal 16S ribosomal RNA gene fragments obtained from yaks (Bos grunniens) from Qinghai-Tibetan Plateau, China. Samples were obtained from 14 animals allocated to either pasture grazing (Graze), a grazing and supplementary feeding regime (GSF), or an indoor feeding regime (Feed). The predominant bacterial phyla across feeding regimes were Bacteroidetes (51.06%) and Firmicutes (32.73%). At genus level, 25 genera were shared across all samples. The relative abundance of Prevotella in the graze and GSF regime group were significantly higher than that in the feed regime group. Meanwhile, the relative abundance of Ruminococcus was lower in the graze group than the feed and GSF regime groups. The most abundant archaeal phylum was Euryarchaeota, which accounted for 99.67% of the sequences. Ten genera were detected across feeding regimes, seven genera were shared by all samples, and the most abundant was genus Methanobrevibacter (91.60%). The relative abundance of the most detected genera were similar across feeding regime groups. Our results suggest that the ruminal bacterial community structure differs across yak feeding regimes while the archaeal community structures are largely similar.

18.
Sensors (Basel) ; 17(1)2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28054947

RESUMEN

The spatial resolution of a hyperspectral image is often coarse as the limitations on the imaging hardware. A novel super-resolution reconstruction algorithm for hyperspectral imagery (HSI) via adaptive projection onto convex sets and image blur metric (APOCS-BM) is proposed in this paper to solve these problems. Firstly, a no-reference image blur metric assessment method based on Gabor wavelet transform is utilized to obtain the blur metric of the low-resolution (LR) image. Then, the bound used in the APOCS is automatically calculated via LR image blur metric. Finally, the high-resolution (HR) image is reconstructed by the APOCS method. With the contribution of APOCS and image blur metric, the fixed bound problem in POCS is solved, and the image blur information is utilized during the reconstruction of HR image, which effectively enhances the spatial-spectral information and improves the reconstruction accuracy. The experimental results for the PaviaU, PaviaC and Jinyin Tan datasets indicate that the proposed method not only enhances the spatial resolution, but also preserves HSI spectral information well.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(10): 2780-4, 2012 Oct.
Artículo en Chino | MEDLINE | ID: mdl-23285886

RESUMEN

Remote sensing monitoring of alpine grassland nutritional status is a key factor of grassland reasonable utilization, also a difficulty for dynamic vegetation monitoring. The present paper studies the correlations between vegetation nutrition and hyperspectral data. The results showed that two band ratio models have a significant correlation with biomass, air-DM, P, CF, and CP. MAXR models have a significant correlation with most of nutrition index when selected wavebands equaled five. On the whole, the MAXR model precedes two band ratio models. Using MAXR models to estimate air-DM, P and CF can obtain higher accuracy.


Asunto(s)
Altitud , Frío , Poaceae/crecimiento & desarrollo , Tecnología de Sensores Remotos , Análisis Espectral , Biomasa , Conservación de los Recursos Naturales , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA