Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geosci Model Dev ; 13(7): 2925-2944, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33343831

RESUMEN

We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM2.5) affect public health across the US.

2.
J Environ Radioact ; 192: 667-686, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29525108

RESUMEN

After performing a first multi-model exercise in 2015 a comprehensive and technically more demanding atmospheric transport modelling challenge was organized in 2016. Release data were provided by the Australian Nuclear Science and Technology Organization radiopharmaceutical facility in Sydney (Australia) for a one month period. Measured samples for the same time frame were gathered from six International Monitoring System stations in the Southern Hemisphere with distances to the source ranging between 680 (Melbourne) and about 17,000 km (Tristan da Cunha). Participants were prompted to work with unit emissions in pre-defined emission intervals (daily, half-daily, 3-hourly and hourly emission segment lengths) and in order to perform a blind test actual emission values were not provided to them. Despite the quite different settings of the two atmospheric transport modelling challenges there is common evidence that for long-range atmospheric transport using temporally highly resolved emissions and highly space-resolved meteorological input fields has no significant advantage compared to using lower resolved ones. As well an uncertainty of up to 20% in the daily stack emission data turns out to be acceptable for the purpose of a study like this. Model performance at individual stations is quite diverse depending largely on successfully capturing boundary layer processes. No single model-meteorology combination performs best for all stations. Moreover, the stations statistics do not depend on the distance between the source and the individual stations. Finally, it became more evident how future exercises need to be designed. Set-up parameters like the meteorological driver or the output grid resolution should be pre-scribed in order to enhance diversity as well as comparability among model runs.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Monitoreo de Radiación , Radioisótopos de Xenón/análisis , Australia , Cooperación Internacional
3.
J Environ Radioact ; 157: 41-51, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26998569

RESUMEN

The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from releases from a nuclear explosion.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Modelos Teóricos , Liberación de Radiactividad Peligrosa , Radiofármacos , Radioisótopos de Xenón/análisis , Explosiones , Monitoreo de Radiación
4.
J Air Waste Manag Assoc ; 65(10): 1206-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26091206

RESUMEN

UNLABELLED: We employed an optimal interpolation (OI) method to assimilate AIRNow ozone/PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) data into the Community Multi-scale Air Quality (CMAQ) model to improve the ozone and total aerosol concentration for the CMAQ simulation over the contiguous United States (CONUS). AIRNow data assimilation was applied to the boundary layer, and MODIS AOD data were used to adjust total column aerosol. Four OI cases were designed to examine the effects of uncertainty setting and assimilation time; two of these cases used uncertainties that varied in time and location, or "dynamic uncertainties." More frequent assimilation and higher model uncertainties pushed the modeled results closer to the observation. Our comparison over a 24-hr period showed that ozone and PM2.5 mean biases could be reduced from 2.54 ppbV to 1.06 ppbV and from -7.14 µg/m³ to -0.11 µg/m³, respectively, over CONUS, while their correlations were also improved. Comparison to DISCOVER-AQ 2011 aircraft measurement showed that surface ozone assimilation applied to the CMAQ simulation improves regional low-altitude (below 2 km) ozone simulation. IMPLICATIONS: This paper described an application of using optimal interpolation method to improve the model's ozone and PM2.5 estimation using surface measurement and satellite AOD. It highlights the usage of the operational AIRNow data set, which is available in near real time, and the MODIS AOD. With a similar method, we can also use other satellite products, such as the latest VIIRS products, to improve PM2.5 prediction.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Ozono/análisis , Material Particulado/análisis , Modelos Teóricos , Tamaño de la Partícula , Tecnología de Sensores Remotos , Incertidumbre , Estados Unidos
5.
Environ Sci Technol ; 49(7): 4362-71, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25729920

RESUMEN

Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Modelos Teóricos , Mortalidad Prematura , Hollín/efectos adversos , Emisiones de Vehículos/toxicidad , Monitoreo del Ambiente , Gasolina/efectos adversos , Humanos , Estaciones del Año , Estados Unidos
6.
Environ Sci Technol ; 40(12): 3855-64, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16830553

RESUMEN

An application of the adjoint method in air quality management is demonstrated. We use a continental scale chemical transport model (STEM) to calculate the sensitivities of a nationwide U.S. ozone national ambient air quality standard (NAAQS) nonattainment metric to precursor emissions for the period July 1 to August 15, 2004. The model shows low bias and error (-4 and 24%, respectively), particularly for areas with high ozone concentrations. The nonattainment metric accounts for both 1-h and 8-h ozone standards, but is dominated by the 8-h exceedances (97% of the combined metric). Largest values of sensitivities are found to be with respect to emissions in the south and southeast U.S., Ohio River Valley, and California. When nonattainment sensitivities are integrated over the entire U.S., NOx emissions account for the largest contribution (62% of the total), followed by biogenic and anthropogenic VOCs (24% and 14%, respectively). For NOx emissions, point/area and mobile sources account for 54% and 46% of the total sensitivities, respectively. We also provide a state-by-state comparison for the nonattainment magnitude, nonattainment sensitivity, and emission magnitudes to explore the influence of interstate transport of ozone and its precursors, and policy implications of the results. Our analysis of the nationwide ozone nonattainment metric suggests that simple cap-and-trade programs may prove inadequate in achieving sought-after air quality objectives.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/normas , Ozono/análisis , Ozono/normas , Simulación por Computador , Monitoreo del Ambiente/métodos , Modelos Teóricos , Óxido Nitroso , Ozono/metabolismo , Sensibilidad y Especificidad , Estados Unidos , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...