Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1205143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333648

RESUMEN

Interferon and chemokine-mediated immune responses are two general antiviral programs of the innate immune system in response to viral infections and have recently emerged as important players in systemic metabolism. This study found that the chemokine CCL4 is negatively regulated by glucose metabolism and avian leukosis virus subgroup J (ALV-J) infection in chicken macrophages. Low expression levels of CCL4 define this immune response to high glucose treatment or ALV-J infection. Moreover, the ALV-J envelope protein is responsible for CCL4 inhibition. We confirmed that CCL4 could inhibit glucose metabolism and ALV-J replication in chicken macrophages. The present study provides novel insights into the antiviral defense mechanism and metabolic regulation of the chemokine CCL4 in chicken macrophages.

2.
Vet Res Commun ; 47(2): 431-443, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715584

RESUMEN

Endogenous retroviruses (ERVs) are remnants of the historical retroviral infections, and their derived transcripts with viral signatures are important sources of long noncoding RNAs (lncRNAs). We have previously shown that the chicken ERV-derived lncRNA lnc-ALVE1-AS1 exerts antiviral innate immunity in chicken embryo fibroblasts. However, it is not clear whether this endogenous retroviral RNA has a similar function in immune cells. Here, we found that lnc-ALVE1-AS1 was persistently inhibited in chicken macrophages after avian leukosis virus subgroup J (ALV-J) infection. Furthermore, overexpression of lnc-ALVE1-AS1 significantly inhibited the replication of exogenous ALV-J, whereas knockdown of lnc-ALVE1-AS1 promoted the replication of ALV-J in chicken macrophages. This phenomenon is attributed to the induction of antiviral innate immunity by lnc-ALVE1-AS1 in macrophages, whereas knockdown of lnc-ALVE1-AS1 had the opposite effect. Mechanistically, lnc-ALVE1-AS1 can be sensed by the cytosolic pattern recognition receptor TLR3 and trigger the type I interferons response. The present study provides novel insights into the antiviral defense of ERV-derived lncRNAs in macrophages and offers new strategies for future antiviral solutions.


Asunto(s)
Virus de la Leucosis Aviar , ARN Largo no Codificante , Embrión de Pollo , Animales , Pollos , Virus de la Leucosis Aviar/genética , Receptor Toll-Like 3/genética , ARN Largo no Codificante/genética , Línea Celular , Macrófagos , Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA