Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Chem Inf Model ; 64(15): 6147-6161, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39042494

RESUMEN

Among the HDACs family, histone deacetylase 6 (HDAC6) has attracted extensive attention due to its unique structure and biological functions. Numerous studies have shown that compared with broad-spectrum HDACs inhibitors, selective HDAC6 inhibitors exert ideal efficacy in tumor treatment with insignificant toxic and side effects, demonstrating promising clinical application prospect. Herein, we carried out rational drug design by integrating a deep learning model, molecular docking, and molecular dynamics simulation technology to construct a virtual screening process. The designed derivatives with 5-phenyl-1H-indole fragment as Cap showed desirable cytotoxicity to the various tumor cell lines, all of which were within 15 µM (ranging from 0.35 to 14.87 µM), among which compound 5i had the best antiproliferative activities against HL-60 (IC50 = 0.35 ± 0.07 µM) and arrested HL-60 cells in the G0/G1 phase. In addition, 5i exhibited better isotype selective inhibitory activities due to the potent potency against HDAC6 (IC50 = 5.16 ± 0.25 nM) and the reduced inhibitory activities against HDAC1 (selective index ≈ 124), which was further verified by immunoblotting results. Moreover, the representative binding conformation of 5i on HDAC6 was revealed and the key residues contributing 5i's binding were also identified via decomposition free-energy analysis. The discovery of lead compound 5i also indicates that virtual screening is still a beneficial tool in drug discovery and can provide more molecular skeletons with research potential for drug design, which is worthy of widespread application.


Asunto(s)
Diseño de Fármacos , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Indoles , Simulación del Acoplamiento Molecular , Humanos , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Indoles/farmacología , Indoles/química , Línea Celular Tumoral , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Descubrimiento de Drogas/métodos , Interfaz Usuario-Computador
2.
Nucleic Acids Res ; 52(D1): D1355-D1364, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37930837

RESUMEN

The metabolic roadmap of drugs (MRD) is a comprehensive atlas for understanding the stepwise and sequential metabolism of certain drug in living organisms. It plays a vital role in lead optimization, personalized medication, and ADMET research. The MRD consists of three main components: (i) the sequential catalyses of drug and its metabolites by different drug-metabolizing enzymes (DMEs), (ii) a comprehensive collection of metabolic reactions along the entire MRD and (iii) a systematic description on efficacy & toxicity for all metabolites of a studied drug. However, there is no database available for describing the comprehensive metabolic roadmaps of drugs. Therefore, in this study, a major update of INTEDE was conducted, which provided the stepwise & sequential metabolic roadmaps for a total of 4701 drugs, and a total of 22 165 metabolic reactions containing 1088 DMEs and 18 882 drug metabolites. Additionally, the INTEDE 2.0 labeled the pharmacological properties (pharmacological activity or toxicity) of metabolites and provided their structural information. Furthermore, 3717 drug metabolism relationships were supplemented (from 7338 to 11 055). All in all, INTEDE 2.0 is highly expected to attract broad interests from related research community and serve as an essential supplement to existing pharmaceutical/biological/chemical databases. INTEDE 2.0 can now be accessible freely without any login requirement at: http://idrblab.org/intede/.


Asunto(s)
Bases de Datos de Compuestos Químicos , Bases de Datos Factuales , Inactivación Metabólica , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo
3.
Nanomaterials (Basel) ; 13(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38063739

RESUMEN

Boron-doped diamond (BDD) thin film electrodes have great application potential in water treatment. However, the high electrode energy consumption due to high resistance directly limits the application range of existing BDD electrodes. In this paper, the BDD/graphene/BDD (DGD) sandwich structure electrode was prepared, which effectively improved the conductivity of the electrode. Meanwhile, the sandwich electrode can effectively avoid the degradation of electrode performance caused by the large amount of non-diamond carbon introduced by heavy doping, such as the reduction of the electrochemical window and the decrease of physical and chemical stability. The microstructure and composition of the film were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), Raman spectroscopy, and transmission electron microscopy (TEM). Then, the degradation performance of citric acid (CA), catechol, and tetracycline hydrochloride (TCH) by DGD electrodes was systematically studied by total organic carbon (TOC) and Energy consumption per unit TOC removal (ECTOC). Compared with the single BDD electrode, the new DGD electrode improves the mobility of the electrode and reduces the mass transfer resistance by 1/3, showing better water treatment performance. In the process of dealing with Citric acid, the step current of the DGD electrode was 1.35 times that of the BDD electrode, and the energy utilization ratio of the DGD electrode was 2.4 times that of the BDD electrode. The energy consumption per unit TOC removal (ECTOC) of the DGD electrode was lower than that of BDD, especially Catechol, which was reduced to 66.9% of BDD. The DGD sandwich electrode, as a new electrode material, has good electrochemical degradation performance and can be used for high-efficiency electrocatalytic degradation of organic pollutants.

4.
World J Clin Cases ; 11(34): 8164-8169, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38130781

RESUMEN

BACKGROUND: Langerhans cell histiocytosis (LCH) is a rare clonal proliferative disease of Langerhans cells with unknown pathogenesis. An increasing number of clinicians recognize that LCH has a wide clinical spectrum and a highly varied course. Adults rarely develop LCH. Here, we report a case of adult localized LCH. CASE SUMMARY: A 32-year-old woman presented with plaques and ulcers on the vulva and crissum, accompanied by pain that persisted for more than one year. Physical examination revealed a red-infiltrating plaque with ulcerations and exudates in the vulva and crissum. Pathological examination revealed a diffuse infiltration of lymphocytes, eosinophilic granulocytes, and histiocytoid cells in the superficial dermis. Proliferative histiocytoid cells showed mild atypia, partly with kidney-shaped nuclei. Immunohistochemical examination showed that the histiocytoid cells were positive for S100 protein and CD1 and weakly positive for CD68 (20% +), with a Ki-67 index of 30%. Laboratory tests did not reveal any other systemic damage. The patient was diagnosed with adult localized LCH and was prescribed oral prednisone (20 mg) once daily. The skin lesions gradually improved and are still being followed-up. CONCLUSION: Adult localized LCH is rare and must be differentiated from other common conditions.

5.
Comput Biol Med ; 160: 107036, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37196455

RESUMEN

The abnormal enhancement of histone deacetylase 6 (HDAC6) has been demonstrated to be closely related to the occurrence and development of various malignant tumors, attracting extensive attention as a promising target for cancer therapy. Currently, only limited selective HDAC6 inhibitors have entered clinical trials, making the rapid discovery of selective HDAC6 inhibitors with safety profiles particularly urgent. In this study, a multi-layer virtual screening workflow was established, and the representative compounds screened were biologically evaluated in combination with enzyme inhibitory and anti-tumor cell proliferation experiments. The experimental results showed that the screened compounds L-25, L-32, L-45 and L-81 exhibited nanomolar inhibitory activity against HDAC6, and exerted a certain degree of anti-proliferative activities against tumor cells, especially the cytotoxicity of L-45 to A375 (IC50 = 11.23 ± 1.27 µM) and the cytotoxicity of L-81 against HCT-116 (IC50 = 12.25 ± 1.13 µM). Additionally, the molecular mechanisms underlying the subtype selective inhibitory activities of the selected compounds were further elucidated using computational approaches, and the hotspot residues on HDAC6 contributing to the ligands' binding were identified. In summary, this study established a multi-layer screening scheme to quickly and effectively screen out hit compounds with enzyme inhibitory activity and anti-tumor cell proliferation, providing novel scaffolds for the subsequent anti-tumor drug design based on HDAC6 target.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Histona Desacetilasa 6/química , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/uso terapéutico , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
6.
Anal Methods ; 15(20): 2528-2535, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37191157

RESUMEN

In the present work, an electrochemical sensor based on reduced graphene oxide/ß-cyclodextrin/silver nanoparticle/polyoxometalate (RGO-CD-AgNP-POM) was developed for the simultaneous detection of uric acid (UA) and L-tyrosine (L-Tyr). First, an RGO-CD-AgNP-POM nanocomposite was synthesized via a simple photoreduction method and characterized by transmission electron microscopy (TEM), energy dispersive X-ray imaging (EDS), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). As an electrode material, RGO-CD-AgNP-POM showed wide linear ranges (0.5-500 µM for UA, and 1-400 µM for L-Tyr) and relatively low detection limits (0.11 µM for UA, and 0.23 µM for L-Tyr). In addition, the combination of supramolecular recognition from CD and excellent electrochemical performances from RGO, AgNPs and POM was expected to enhance the sensing performances toward UA and L-Tyr in real samples with favorable recovery ranges (99%-104%). This nanocomposite provides a new platform for developing the family of electrode materials.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , beta-Ciclodextrinas , Ácido Úrico/análisis , Ácido Úrico/química , Plata/química , Nanopartículas del Metal/química , Tirosina , Dopamina/análisis , Nanocompuestos/química
7.
Environ Sci Pollut Res Int ; 30(26): 68403-68416, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37121944

RESUMEN

Multilayer strontium-doped TiO2/carbon dots (CDs) materials (TC) were produced via sol-gel-layered carbonization method. A thorough analysis of the fabricated composites via XRD, SEM, and XPS revealed that strontium ions, TiO2 and CDs, were combined with each other to form layered structures. According to the UV-Vis diffuse reflectance spectrograms and (αhv)1/2 vs. hv plots, the electron-donor property of strontium ions caused a more positive TC conduction band position than that in the pure TiO2, thereby increasing the visible-light absorption range of TC. Based on the photocatalytic degradation data, the degradation rate of enrofloxacin was 84.7% at the dosage of 0.05 g·L-1 and the concentration of 10 mg·L-1. The capture experiments and ESR results showed that ·O2- and e- played a major role in the degradation process of TC. The possible degradation mechanism of enrofloxacin was explained in terms of decarboxylation and defluorination, as was detected via ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis.


Asunto(s)
Carbono , Espectrometría de Masas en Tándem , Enrofloxacina , Cromatografía Liquida , Luz , Titanio/química , Catálisis
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-928274

RESUMEN

The choice of friction interface has always been a controversial topic in hip arthroplasty. Although the metal-on-metal (MoM) interface has gradually faded out of our vision, its revision is a clinical difficulty. Adverse reactions to metal debris (ARMD) is the most common indication for MoM hip arthroplasty revision, and the clinical results of hip arthroplasty due to ARMD are not satisfactory. At present, the indications and suggestions for revision of ARMD are not uniform. In this article, the clinical diagnosis, indications of revision, risk factors of prognosis, intraoperative suggestions and reasons for revision of ARMD were summarized. This article briefly introduces the diagnosis and treatment strategies and precautions of hip arthroplasty due to ARMD, in order to provide reference for such patients in clinical practice.


Asunto(s)
Humanos , Artroplastia de Reemplazo de Cadera/efectos adversos , Prótesis de Cadera/efectos adversos , Prótesis Articulares de Metal sobre Metal/efectos adversos , Diseño de Prótesis , Falla de Prótesis , Reoperación
10.
J Chem Phys ; 149(6): 064301, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30111124

RESUMEN

A series of 20 composite structures, consisting of superhalogen and noble gas (Ng) hydrides, was explored via high-level coupled-cluster single, double and perturbative triple excitations calculations in this work. The existence of these composites, as local minima on the potential energy surface, arises from the charge transfer from the Ng hydride part to the superhalogen moiety. Clearly, this transfer could lead to stabilizing the interaction of the ionic type between the two components. The driving force of the charge transfer should be the high vertical electron detachment energy (VDE) of the superhalogen part leading to its enough capability of extracting the electron from the Ng hydride moiety. However, except triggering the ionic attractive interaction, there is nomonotonic correlation between the VDE value and the thermodynamic stability of the whole composite. This counter-intuitive result actually originates from the fact that, irrespective of various superhalogens, only two of their F ligands interact with the Ng atoms directly. Thus, although leading to higher VDE values, the increase in the number of electronegative ligands of the superhalogen moiety does not affect the stabilizing interaction of the composites here directly. In other words, with the necessary charge transfer generated, further increase of the VDE does not ensure the improvement of the thermodynamic stabilities of the whole composite. Moreover, in the transition state of the exothermic dissociation channel, more F atoms will give rise to higher probability of additional attractions between the F and H atoms which should lower the energy barrier. That is to say, increasing VDE, i.e., having more F atoms in many cases, will probably reduce the kinetic stability. Knowing the inevitable existence of the exothermic channel, kinetic stability is crucial to the ultimate goal of experimental observation of these Ng hydrides. Thus, in some cases, only the superhalogen itself may not provide enough information for the correct prediction on the properties of the whole composites. The understanding of the superhalogen-based composites will provide valuable information on the functional properties as well as the application potential of superhalogen clusters. Thus, the corresponding researches should focus on not only the superhalogen itself but also other related aspects, especially the details of the interaction between different parts.

11.
Zhongguo Gu Shang ; 29(6): 561-5, 2016 Jun.
Artículo en Chino | MEDLINE | ID: mdl-27534090

RESUMEN

There should be confusion about diagnosis and treatment for multiple segments cervical myelopathy in some respects. The author reviewed the literature and combined with clinical experience, proposed a new classification for cervical myelopathy according to responsibility segment areas, which dividing into single segment,double segments (continues or jumping type), multi-segment (≥ three segments). The responsible segments determination is the premise of diagnosis and also a key to determine surgical decompression segment. Decompression only according to imaging was not desirable, surgical segment should mainly relies on clinical, imaging, electrophysiological and comprehensive analysis to avoid surgery range expansion. Surgical approach and procedures are still the focus and hotspot of cervical myelopathy treatment, and no treatment standards and corresponding guidelines to consult. The author proposes that surgical approach should advocate the individual, and surgical procedure should follow simple instead of complicate, anterior and posterior combined decompression is not necessary in most cases, and anterior and posterior fixation are not need.


Asunto(s)
Vértebras Cervicales/cirugía , Espondilosis/diagnóstico , Espondilosis/cirugía , Descompresión Quirúrgica , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA