Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurology ; 93(3): 114-123, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31221716

RESUMEN

De novo pathogenic variants in STXBP1 encoding syntaxin1-binding protein (STXBP1, also known as Munc18-1) lead to a range of early-onset neurocognitive conditions, most commonly early infantile epileptic encephalopathy type 4 (EIEE4, also called STXBP1 encephalopathy), a severe form of epilepsy associated with developmental delay/intellectual disability. Other neurologic features include autism spectrum disorder and movement disorders. The progression of neurologic symptoms has been reported in a few older affected individuals, with the appearance of extrapyramidal features, reminiscent of early onset parkinsonism. Understanding the pathologic process is critical to improving therapies, as currently available antiepileptic drugs have shown limited success in controlling seizures in EIEE4 and there is no precision medication approach for the other neurologic features of the disorder. Basic research shows that genetic knockout of STXBP1 or other presynaptic proteins of the exocytic machinery leads to widespread perinatal neurodegeneration. The mechanism that regulates this effect is under scrutiny but shares intriguing hallmarks with classical neurodegenerative diseases, albeit appearing early during brain development. Most critically, recent evidence has revealed that STXBP1 controls the self-replicating aggregation of α-synuclein, a presynaptic protein involved in various neurodegenerative diseases that are collectively known as synucleinopathies, including Parkinson disease. In this review, we examine the tantalizing link among STXBP1 function, EIEE, and the neurodegenerative synucleinopathies, and suggest that neural development in EIEE could be further affected by concurrent synucleinopathic mechanisms.


Asunto(s)
Proteínas Munc18/genética , Trastornos del Neurodesarrollo/genética , Espasmos Infantiles/genética , Sinucleinopatías/genética , Animales , Corteza Cerebral/embriología , Exocitosis/genética , Humanos , Chaperonas Moleculares , Proteínas Munc18/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/fisiopatología , Proyección Neuronal/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/fisiopatología , Sinucleinopatías/metabolismo , Sinucleinopatías/fisiopatología , alfa-Sinucleína/metabolismo
4.
Nat Commun ; 8: 13660, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28045048

RESUMEN

Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Transmisión Sináptica , Sintaxina 1/genética , Animales , Sitios de Unión , Difusión , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Regulación de la Expresión Génica , Larva/citología , Larva/fisiología , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Imagen Molecular/métodos , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Optogenética , Unión Proteica , Transporte de Proteínas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Sintaxina 1/metabolismo , Toxina Tetánica/genética , Toxina Tetánica/metabolismo
5.
J Cell Biol ; 214(6): 705-18, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27597756

RESUMEN

Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body-like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-Syn(WT) and that of the Parkinson's disease-causing α-Syn(A30P) mutant, an effect rescued by Munc18-1(WT) expression, indicative of chaperone activity. Coexpression of the α-Syn(A30P) mutant with Munc18-1 reduced the number of α-Syn(A30P) aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Degeneración Nerviosa , Neuronas/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo , Animales , Animales Recién Nacidos , Genotipo , Haploinsuficiencia , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Microscopía Fluorescente , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Munc18/química , Proteínas Munc18/genética , Mutación , Neuronas/patología , Células PC12 , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Unión Proteica , Conformación Proteica , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección , alfa-Sinucleína/química , alfa-Sinucleína/genética
6.
J Cell Biol ; 214(7): 847-58, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27646276

RESUMEN

Munc18-1 and syntaxin-1A control SNARE-dependent neuroexocytosis and are organized in nanodomains on the plasma membrane of neurons and neurosecretory cells. Deciphering the intra- and intermolecular steps via which they prepare secretory vesicles (SVs) for fusion is key to understanding neuronal and hormonal communication. Here, we demonstrate that expression of a priming-deficient mutant lacking 17 residues of the domain 3a hinge-loop (Munc18-1(Δ317-333)) in PC12 cells engineered to knockdown Munc18-1/2 markedly prolonged SV docking. Single-molecule analysis revealed nonhomogeneous diffusion of Munc18-1 and syntaxin-1A in and out of partially overlapping nanodomains. Whereas Munc18-1(WT) mobility increased in response to stimulation, syntaxin-1A became less mobile. These Munc18-1 and syntaxin-1A diffusional switches were blocked by the expression of Munc18-1(Δ317-333), suggesting that a conformational change in the Munc18-1 hinge-loop controls syntaxin-1A and subsequent SNARE complex assembly. Accordingly, syntaxin-1A confinement was prevented by expression of botulinum neurotoxin type E. The Munc18-1 domain 3a hinge-loop therefore controls syntaxin-1A engagement into SNARE complex formation during priming.


Asunto(s)
Proteínas Munc18/química , Proteínas Munc18/metabolismo , Nanopartículas/química , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Animales , Área Bajo la Curva , Toxinas Botulínicas/metabolismo , Humanos , Modelos Moleculares , Células PC12 , Dominios Proteicos , Estructura Secundaria de Proteína , Ratas
7.
Cell Rep ; 10(5): 783-795, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25660027

RESUMEN

AMPA receptors (AMPARs) have recently been shown to undergo post-translational ubiquitination in mammalian neurons. However, the underlying molecular mechanisms are poorly understood and remain controversial. Here, we report that all four AMPAR subunits (GluA1-4) are rapidly ubiquitinated upon brief application of AMPA or bicuculline in cultured neurons. This process is Ca2+ dependent and requires the activity of L-type voltage-gated Ca2+ channels and Ca2+/calmodulin-dependent kinase II. The ubiquitination of all subunits occurs exclusively on AMPARs located on the plasma membrane post-endocytosis. The sites of ubiquitination were mapped to Lys-868 in GluA1 and Lys-870/Lys-882 in GluA2 C-terminals. Mutation of these lysines did not affect basal surface expression or AMPA-induced internalization of GluA1 and GluA2 subunits. Instead, it reduced the intracellular trafficking of AMPARs to the late endosomes and thus protein degradation. These data indicate that ubiquitination is an important regulatory signal for controlling AMPAR function, which may be crucial for synaptic plasticity.

8.
Biochem Biophys Res Commun ; 448(4): 403-8, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24802395

RESUMEN

Huntington's disease (HD) is the most common hereditary neurodegenerative diseases, in which the loss of striatal neuron caused by the aggregation of mutant huntingtin protein (mHtt) is the main pathological feature. Our previous studies have demonstrated that human adipose stem cells (hASC) and its extracts can slow down the progression of HD in vitro and in vivo. hASC are readily accessible adult stem cells, and the cytosolic extracts contain a number of neurotrophic factors. Here, we further explored the role of the hASC extracts in neuronal death and mitochondrial function in HD. Our results showed that the hASC extracts prevent mHtt-induced cell toxicity and cell apoptosis. Moreover, the hASC extracts recovered mHtt-induced mitochondrial oxidative stress and reduced mitochondrial membrane potential. The hASC extracts blocked the interaction between p53 and mHtt, and decreased the endogenous p53 levels at both transcriptional and post-translational levels, resulting in the instability of p53 and increased neuronal survival. Taken together, these findings implicate protective roles of hASC extracts in mHtt-induced mitochondrial apoptosis, providing insights into the molecular mechanism of the hASC in the therapeutic strategy of HD.


Asunto(s)
Adipocitos/metabolismo , Células Madre Adultas/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis/fisiología , Extractos Celulares/farmacología , Línea Celular , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Potencial de la Membrana Mitocondrial , Ratones , Células Madre Multipotentes/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Proteína p53 Supresora de Tumor/metabolismo
9.
FEBS Lett ; 587(5): 452-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23333298

RESUMEN

α-Synuclein (α-syn) can be secreted from neurons into the extracellular space, affecting the homeostasis of neighboring cells, but the pathophysiology of secreted α-syn remains largely unknown. We found that when exogenously applied to COS-7 cells, α-syn secreted from differentiated SH-SY5Y cells was taken up by dynamin-dependent endocytosis. Upon internalization, α-syn significantly increased the rate of transferrin receptor (TfR) internalization and recycling, and subsequently the surface levels of TfR. The effects are attributable to the oligomeric form, but not monomeric or fibrillar form, of extracellular α-syn. Together, multiple alterations in membrane trafficking by secreted oligomeric α-syn may contribute to the early stages of pathogenesis in Parkinson's disease.


Asunto(s)
Endocitosis , alfa-Sinucleína/fisiología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Medios de Cultivo Condicionados/química , Dinaminas/metabolismo , Humanos , Cinética , Modelos Biológicos , Terapia Molecular Dirigida , Enfermedad de Parkinson/tratamiento farmacológico , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Receptores de Transferrina/metabolismo , Transferrina/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...