Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(22): 27166-27172, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37246630

RESUMEN

While dimensional change under thermal loading dictates various device failure mechanisms in soft materials, the interplay between microstructures and thermal expansion remains underexplored. Here, we develop a novel method to directly probe the thermal expansion for nanoscale polymer films using an atomic force microscope as well as confining active thermal volume. In a model system, spin-coated poly(methyl methacrylate), we find that the in-plane thermal expansion is enhanced by 20-fold compared to that along the out-of-plane directions in confined dimensions. Our molecular dynamics simulations show that the collective motion of side groups along backbone chains uniquely drives the enhancement of thermal expansion anisotropy of polymers in the nanoscale limit. This work unveils the intimate role of the microstructure of polymer films on its thermal-mechanical interaction, paving a route to judiciously enhance the reliability in a broad range of thin-film devices.

2.
Proc Natl Acad Sci U S A ; 117(49): 30934-30941, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229543

RESUMEN

It was previously shown [J. K. Lee et al., Proc. Natl. Acad. Sci. U.S.A, 116, 19294-19298 (2019)] that hydrogen peroxide (H2O2) is spontaneously produced in micrometer-sized water droplets (microdroplets), which are generated by atomizing bulk water using nebulization without the application of an external electric field. Here we report that H2O2 is spontaneously produced in water microdroplets formed by dropwise condensation of water vapor on low-temperature substrates. Because peroxide formation is induced by a strong electric field formed at the water-air interface of microdroplets, no catalysts or external electrical bias, as well as precursor chemicals, are necessary. Time-course observations of the H2O2 production in condensate microdroplets showed that H2O2 was generated from microdroplets with sizes typically less than ∼10 µm. The spontaneous production of H2O2 was commonly observed on various different substrates, including silicon, plastic, glass, and metal. Studies with substrates with different surface conditions showed that the nucleation and the growth processes of condensate water microdroplets govern H2O2 generation. We also found that the H2O2 production yield strongly depends on environmental conditions, including relative humidity and substrate temperature. These results show that the production of H2O2 occurs in water microdroplets formed by not only atomizing bulk water but also condensing water vapor, suggesting that spontaneous water oxidation to form H2O2 from water microdroplets is a general phenomenon. These findings provide innovative opportunities for green chemistry at heterogeneous interfaces, self-cleaning of surfaces, and safe and effective disinfection. They also may have important implications for prebiotic chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA