Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Sci Rep ; 14(1): 3404, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38337025

RESUMEN

Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (Mtbc), which develops from asymptomatic latent TB to active stages. The microbiome was purposed as a potential factor affecting TB pathogenesis, but the study was limited. The present study explored the association between gut-pharyngeal microbiome and TB stages in cynomolgus macaques using the full-length 16S rDNA amplicon sequencing based on Oxford Nanopore Technologies. The total of 71 macaques was divided into TB (-) control, TB (+) latent and TB (+) active groups. The differential abundance analysis showed that Haemophilus hemolyticus was decreased, while Prevotella species were increased in the pharyngeal microbiome of TB (+) macaques. In addition, Eubacterium coprostanoligenes in the gut was enriched in TB (+) macaques. Alteration of these bacteria might affect immune regulation and TB severity, but details of mechanisms should be further explored and validated. In summary, microbiota may be associated with host immune regulation and affect TB progression. The findings suggested the potential mechanisms of host-microbes interaction, which may improve the understanding of the role of microbiota and help develop therapeutics for TB in the future.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Nanoporos , Tuberculosis , Animales , Tuberculosis/microbiología , Microbioma Gastrointestinal/genética , Microbiota/genética , Macaca fascicularis/genética , ARN Ribosómico 16S/genética
2.
Sci Rep ; 14(1): 1518, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233591

RESUMEN

The detection and management of Mycobacterium tuberculosis complex (MTBC) infection, the causative agent of tuberculosis (TB), in macaques, including cynomolgus macaques (Macaca fascicularis), are of significant concern in research and regions where macaques coexist with humans or other animals. This study explored the utility of the Xpert MTB/RIF Ultra assay, a widely adopted molecular diagnostic tool to diagnose tuberculosis (TB) in humans, to detect DNA from the Mycobacterium tuberculosis complex in clinical samples obtained from cynomolgus macaques. This investigation involved a comprehensive comparative analysis, integrating established conventional diagnostic methodologies, assessing oropharyngeal-tracheal wash (PW) and buccal swab (BS) specimen types, and follow-up assessments at 3-month, 6-month, and 12-month intervals. Our results demonstrated that the Xpert MTB/RIF Ultra assay was able to detect MTBC in 12 of 316 clinical samples obtained from cynomolgus macaques, presenting a potential advantage over bacterial culture and chest radiographs. The Xpert MTB/RIF Ultra assay exhibited exceptional sensitivity (100%) at the animal level, successfully detecting all macaques positive for M. tuberculosis as confirmed by traditional culture methods. The use of PW samples revealed that 5 positive samples from 99 (5.1%) were recommended for testing, compared to 0 samples from 99 buccal swab (BS) samples (0.0%). In particular, the definitive diagnosis of TB was confirmed in three deceased macaques by MTB culture, which detected the presence of the bacterium in tissue autopsy. Our findings demonstrate that the implementation of the Xpert MTB/RIF Ultra assay, along with prompt isolation measures, effectively reduced active TB cases among cynomolgus macaques over a 12-month period. These findings highlight the advance of the Xpert MTB/RIF Ultra assay in TB diagnosis and its crucial role in preventing potential outbreaks in cynomolgus macaques. With its rapidity, high sensitivity, and specificity, the Xpert MTB/RIF Ultra assay can be highly suitable for use in reference laboratories to confirm TB disease and effectively interrupt TB transmission.


Asunto(s)
Antibióticos Antituberculosos , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Animales , Humanos , Tuberculosis Pulmonar/microbiología , Rifampin/farmacología , Macaca fascicularis , Sensibilidad y Especificidad , Tuberculosis/diagnóstico , Tuberculosis/veterinaria , Tuberculosis/tratamiento farmacológico , Esputo/microbiología , Antibióticos Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana/genética
3.
Sci Rep ; 13(1): 8655, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244948

RESUMEN

The detection of pre-extensively (pre-XDR) and extensively drug-resistant tuberculosis (XDR-TB) is challenging. Drug-susceptibility tests for some anti-TB drugs, especially ethambutol (ETH) and ethionamide (ETO), are problematic due to overlapping thresholds to differentiate between susceptible and resistant phenotypes. We aimed to identify possible metabolomic markers to detect Mycobacterium tuberculosis (Mtb) strains causing pre-XDR and XDR-TB. The metabolic patterns of ETH- and ETO-resistant Mtb isolates were also investigated. Metabolomics of 150 Mtb isolates (54 pre-XDR, 63 XDR-TB and 33 pan-susceptible; pan-S) were investigated. Metabolomics of ETH and ETO phenotypically resistant subgroups were analyzed using UHPLC-ESI-QTOF-MS/MS. Orthogonal partial least-squares discriminant analysis revealed distinct separation in all pairwise comparisons among groups. Two metabolites (meso-hydroxyheme and itaconic anhydride) were able to differentiate the pre-XDR and XDR-TB groups from the pan-S group with 100% sensitivity and 100% specificity. In comparisons of the ETH and ETO phenotypically resistant subsets, sets of increased (ETH = 15, ETO = 7) and decreased (ETH = 1, ETO = 6) metabolites specific for the resistance phenotype of each drug were found. We demonstrated the potential for metabolomics of Mtb to differentiate among types of DR-TB as well as between isolates that were phenotypically resistant to ETO and ETH. Thus, metabolomics might be further applied for DR-TB diagnosis and patient management.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapéutico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Espectrometría de Masas en Tándem , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Etionamida , Etambutol/farmacología , Metaboloma , Pruebas de Sensibilidad Microbiana
4.
Trop Med Infect Dis ; 8(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37104364

RESUMEN

This study aimed to characterize whole-genome sequencing (WGS) information of Mycobacterium tuberculosis (Mtb) in the Mandalay region of Myanmar. It was a cross-sectional study conducted with 151 Mtb isolates obtained from the fourth nationwide anti-tuberculosis (TB) drug-resistance survey. Frequency of lineages 1, 2, 3, and 4 were 55, 65, 9, and 22, respectively. The most common sublineage was L1.1.3.1 (n = 31). Respective multi-drug resistant tuberculosis (MDR-TB) frequencies were 1, 1, 0, and 0. Four clusters of 3 (L2), 2 (L4), 2 (L1), and 2 (L2) isolates defined by a 20-single-nucleotide variant (SNV) cutoff were detected. Simpson's index for sublineages was 0.0709. Such high diversity suggests that the area probably had imported Mtb from many geographical sources. Relatively few genetic clusters and MDR-TB suggest there is a chance the future control will succeed if it is carried out properly.

5.
Sci Rep ; 13(1): 5842, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037869

RESUMEN

The wild-born long-tailed macaques (Macaca fascicularis) were recently recruited and used as breeders for the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), and changes in their in-depth gut microbiota profiles were investigated. The Oxford Nanopore Technology (ONT) was used to explore full-length 16S rDNA sequences of gut microbiota in animals once captured in their natural habitat and 1-year following translocation and housing in a hygienic environment at NPRCT-CU. Our findings show that the gut microbiota of macaques after 1 year of hygienic housing and programmed diets feeding was altered and reshaped. The prevalent gut bacteria such as Prevotella copri and Faecalibacterium prausnitzii were enriched after translocation, causing the lower alpha diversity. The correlation analysis revealed that Prevotella copri, Phascolarctobacterium succinatutens, and Prevotella stercorea, showed a positive correlation with each other. Significantly enriched pathways in the macaques after translocation included biosynthesis of essential amino acids, fatty acids, polyamine and butanoate. The effects of microbiota change could help macaques to harvest the energy from programmed diets and adapt their gut metabolism. The novel probiotics and microbiota engineering approach could be further developed based on the current findings and should be helpful for captive animal health care management.


Asunto(s)
Microbioma Gastrointestinal , Vivienda , Animales , Macaca fascicularis
6.
Sci Rep ; 13(1): 1663, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717601

RESUMEN

Autophagy induction by starvation has been shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of the Mycobacterium tuberculosis reference strain H37Rv. In contrast to H37Rv, our previous study showed that strains belonging to the notorious M. tuberculosis Beijing genotype could evade autophagic elimination. Our recent RNA-Seq analysis also discovered that the autophagy-resistant M. tuberculosis Beijing strain (BJN) evaded autophagic control by upregulating the expression of Kxd1, a BORC complex component, and Plekhm2, both of which function in lysosome positioning towards the cell periphery in host macrophages, thereby suppressing enhanced lysosomal delivery to its phagosome and sparing the BJN from elimination as a result. In this work, we further characterised the other specific components of the BORC complex, BORC5-8, and Kinesin proteins in autophagy resistance by the BJN. Depletion of BORCS5-8 and Kinesin-1, but not Kinesin-3, reverted autophagy avoidance by the BJN, resulting in increased lysosomal delivery to the BJN phagosomes. In addition, the augmented lysosome relocation towards the perinuclear region could now be observed in the BJN-infected host cells depleted in BORCS5-8 and Kinesin-1 expressions. Taken together, the data uncovered new roles for BORCS5-8 and Kinesin-1 in autophagy evasion by the BJN.


Asunto(s)
Autofagia , Cinesinas , Mycobacterium tuberculosis , Tuberculosis , Humanos , Autofagia/genética , Autofagia/inmunología , Beijing , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Cinesinas/genética , Cinesinas/inmunología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/genética , Tuberculosis/inmunología , Macrófagos/inmunología
7.
Trop Med Infect Dis ; 7(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36548703

RESUMEN

Mycobacterium tuberculosis complex (MTBC) is divided into 9 whole genome sequencing (WGS) lineages. Among them, lineages 1−4 are widely distributed. Multi-drug resistant tuberculosis (MDR-TB) is a major public health threat. For effective TB control, there is a need to obtain genetic information on lineages of Mycobacterium tuberculosis (Mtb) and to understand distribution of lineages and drug resistance. This study aimed to describe the distribution of major lineages and drug resistance patterns of Mtb in Upper Myanmar. This was a cross-sectional study conducted with 506 sequenced isolates. We found that the most common lineage was lineage 2 (n = 223, 44.1%). The most common drug resistance mutation found was streptomycin (n = 44, 8.7%). Lineage 2 showed a higher number of MDR-TB compared to other lineages. There were significant associations between lineages of Mtb and drug resistance patterns, and between lineages and geographical locations of Upper Myanmar (p value < 0.001). This information on the distribution of Mtb lineages across the geographical areas will support a lot for the better understanding of TB transmission and control in Myanmar and other neighboring countries. Therefore, closer collaboration in cross border tuberculosis control is recommended.

8.
Virulence ; 13(1): 1810-1826, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242542

RESUMEN

The upsurge of multidrug-resistant infections has rendered tuberculosis the principal cause of death among infectious diseases. A clonal outbreak multidrug-resistant triggering strain of Mycobacterium tuberculosis was identified in Kanchanaburi Province, labelled "MKR superspreader," which was found to subsequently spread to other regions, as revealed by prior epidemiological reports in Thailand. Herein, we showed that the MKR displayed a higher growth rate upon infection into host macrophages in comparison with the H37Rv reference strain. To further elucidate MKR's biology, we utilized RNA-Seq and differential gene expression analyses to identify host factors involved in the intracellular viability of the MKR. A set of host genes function in the cellular response to lipid pathway was found to be uniquely up-regulated in host macrophages infected with the MKR, but not those infected with H37Rv. Within this set of genes, the IL-36 cytokines which regulate host cell cholesterol metabolism and resistance against mycobacteria attracted our interest, as our previous study revealed that the MKR elevated genes associated with cholesterol breakdown during its growth inside host macrophages. Indeed, when comparing macrophages infected with the MKR to H37Rv-infected cells, our RNA-Seq data showed that the expression ratio of IL-36RN, the negative regulator of the IL-36 pathway, to that of IL-36G was greater in macrophages infected with the MKR. Furthermore, the MKR's intracellular survival and increased intracellular cholesterol level in the MKR-infected macrophages were diminished with decreased IL-36RN expression. Overall, our results indicated that IL-36RN could serve as a new target against this emerging multidrug-resistant M. tuberculosis strain.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Beijing , Colesterol , Citocinas/genética , Brotes de Enfermedades , Humanos , Lípidos , Mycobacterium tuberculosis/genética , Tailandia , Transcriptoma , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología
9.
Diagnostics (Basel) ; 12(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36291996

RESUMEN

Rifampicin-resistant tuberculosis (RR-TB) has become a major threat globally. This study aims to develop a new assay, RIF-RDp, to enhance the detection of RR-TB based on combined locked nucleic acid (LNA) probes with high-resolution melting curve analysis (HRM). Two new LNA probes were designed to target the class-III and IV mutations of rpoB, H526D, and D516V. LNA probes showed 100% specificity in the detection of mutant targets among characterized and blinded Mycobacterium tuberculosis (Mtb) isolates. The performance of RIF-RDp was evaluated using 110 blinded clinical Mtb isolates in northern Thailand against drug-susceptibility testing (DST), DNA sequencing, and a commercial real-time PCR kit. This assay showed sensitivity and specificity of 94.55% and 98.18% compared to DST, and 96.36% and 100% compared to DNA sequencing. The efficacy of RIF-RDp was comparable to the commercial kit and DNA sequencing. The Cohen's Kappa statistic showed almost perfect agreement between RIF-RDp and the commercial kit (κ = 0.95), and RIF-RDp and DNA sequencing (κ = 0.96). Furthermore, this is the first report of the rare mutation profiles, S531W, and a triple codon deletion (510-512) in northern Thailand. According to high accuracy, the RIF-RDp assay may render an easy-to-use, low-cost, and promising diagnostics of RR-TB in the future.

10.
Emerg Microbes Infect ; 11(1): 1857-1866, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35792049

RESUMEN

Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) make TB difficult to control. Global susceptibility data for six newly recommended anti-TB drugs against M/XDR-TB are still limited. Using publicly available whole-genome sequences, we determined the proportion of 513 phenotypically XDR-TB isolates that carried mutations associated with resistance against these drugs (bedaquiline, clofazimine, linezolid, delamanid, pretomanid and cycloserine). Mutations of Rv0678 and Rv1979c were detected in 69/513 isolates (13.5%) for bedaquiline resistance and 79/513 isolates (15.4%) for clofazimine resistance with additional mmpL5 mutations. Mutations conferring resistance to delamanid were detected in fbiB and ddn genes for 11/513 isolates (2.1%). For pretomanid, a mutation was detected in the ddn gene for 3/513 isolates (0.6%). Nineteen mutations of pykA, cycA, ald, and alr genes, conferring resistance to cycloserine, were found in 153/513 isolates (29.8%). No known mutations associated with linezolid resistance were detected. Cluster analysis showed that 408/513 isolates fell within 99 clusters and that 354 of these isolates were possible primary drug-resistant TB (292 XDR-TB, 57 pre-XDR-TB and 5 MDR-TB). Clonal transmission of primary XDR isolates might contribute significantly to the high prevalence of DR-TB globally.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Clofazimina , Análisis por Conglomerados , Cicloserina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Linezolid , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
11.
J Glob Antimicrob Resist ; 30: 319-325, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35732265

RESUMEN

OBJECTIVES: The present study aims to investigate the population structure of Thai Mycobacterium tuberculosis (MTB) isolates and anti-tuberculosis (TB) drug resistance and to determine the most frequent genetic mutations conferring isoniazid (INH) resistance. METHODS: Genomic DNA from 287 MTB clinical isolates were extracted and used for spoligotyping, amplification and sequencing analysis of the region of different (RD) 105, and of the INH resistance (IR) associated genes, inhA, katG and oxyR-ahpC genes. RESULTS: Eighty-one clinical isolates were resistant to at least one first-line drug; 53 of these were resistant to INH. All strains were classified into three lineages based on their spoligotypes: East Asia (EA)/Beijing, Indo-Oceanic (IO), and Euro-American (EuA). EA and IO lineages revealed a strong association with anti-TB drug resistance (P = 0.005 and 0.013, respectively). A total of 33 mutations were found among IR isolates, which for 28 (84.8%), 3 (9.1%), and 2 (6.1%) occurred in katG, inhA, and oxyR-ahpC genes, respectively. Moreover, the most common mutations found were 54.7% of IR presented Ser315Thr at katG (54.7%) and C-15T at inhA (15.1%) presented. This result suggests the involvement of other genetic markers or other mechanisms of resistance. CONCLUSION: This study provides information about strains diversity, drug resistance profiles, and their possible association. EA and IO lineages were predominant in Thailand, and they were highly associated with anti-TB drug resistance. Testing two mutations including katGSer315Thr and inhA-15C→T could detect 68% of the IR strains.


Asunto(s)
Isoniazida , Mycobacterium tuberculosis , Antituberculosos/farmacología , ADN Bacteriano/genética , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Tailandia
12.
BMC Infect Dis ; 22(1): 401, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35462543

RESUMEN

BACKGROUND: A paucity of studies focused on the genetic association that tuberculosis (TB) patients with non-communicable diseases (NCDs) are more likely to be infected with Mycobacterium tuberculosis (MTB) with more potent virulence on anti-TB drug resistance than those without NCDs. The study aimed to document the predominant genotype, determine the association between MTB genotypes and NCD status and drug resistance. METHODS: We conducted a molecular study in 105 TB patients based on a cross-sectional study focused on the comorbid relationship between chronic conditions and TB among 1773 subjects from September 1, 2019 to August 30, 2020 in Guizhou, China. The participants were investigated through face-to-face interviews, followed by NCDs screening. The DNA of MTB isolates was extracted prior to genotyping using 24 loci MIRU-VNTR. The subsequent evaluations were performed by phylogenetic trees, combined with tests of statistical power, Chi-square or Fisher and multivariate logistic regression analysis. RESULTS: The Beijing family of Lineage 2 (East Asia) was the predominant genotype accounting for 43.8% (46/105), followed by Lineage 4 (Euro-America) strains, including Uganda I (34.3%, 36/105), and the NEW-1 (9.5%, 10/105). The proportion of Beijing strain in patients with and without NCDS was 28.6% (8/28) and 49.4% (38/77), respectively, with a statistical power test value of 24.3%. No significant association was detected between MTB genotype and NCD status. A low clustering rate (2.9%) was identified, consisting of two clusters. The rates of global, mono-, poly- and multi-drug resistance were 16.2% (17/105), 14.3% (15/105), 1.0% (1/105) and 4.8% (5/105), respectively. The drug-resistant rates of rifampicin, isoniazid, and streptomycin, were 6.7% (7/105), 11.4% (12/105) and 5.7% (6/105), respectively. Isoniazid resistance was significantly associated with the Beijing genotype of Lineage 2 (19.6% versus 5.1%). CONCLUSIONS: The Lineage 2 East Asia/Beijing genotype is the dominant genotype of the local MTB with endogenous infection preponderating. Not enough evidence is detected to support the association between the MTB genotype and diabetes/hypertension. Isoniazid resistance is associated with the Lineage 2 East Asia/Beijing strain.


Asunto(s)
Diabetes Mellitus , Hipertensión , Mycobacterium tuberculosis , Enfermedades no Transmisibles , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Estudios Transversales , Diabetes Mellitus/epidemiología , Genotipo , Humanos , Isoniazida , Filogenia , Tuberculosis/epidemiología , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
13.
Pathog Dis ; 80(1)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35038342

RESUMEN

Mycobacterium tuberculosis utilizes several mechanisms to block phagosome-lysosome fusion to evade host cell restriction. However, induction of host cell autophagy by starvation was shown to overcome this block, resulting in enhanced lysosomal delivery to mycobacterial phagosomes and the killing of the M. tuberculosis reference strain H37Rv. Nevertheless, our previous studies found that strains belonging to the M. tuberculosis Beijing genotype can resist starvation-induced autophagic elimination, though the mycobacterial factors involved remain unclear. In this study, we showed that KatG expression is upregulated in the autophagy-resistant M. tuberculosis Beijing strain (BJN) during autophagy induction by the starvation of host macrophages, while such increase was not observed in the H37Rv. KatG depletion using the CRISPR-dCas9 interference system in the BJN resulted in increased lysosomal delivery to its phagosome and decreased its survival upon autophagy induction by starvation. As KatG functions by catabolizing ROS, we determined the source of ROS contributing to the starvation-induced autophagic elimination of mycobacteria. Using siRNA-mediated knockdown, we found that Superoxide dismutase 2, which generates mitochondrial ROS but not NADPH oxidase 2, is important for the starvation-induced lysosomal delivery to mycobacterial phagosomes. Taken together, these findings showed that KatG is vital for the BJN to evade starvation-induced autophagic restriction.


Asunto(s)
Mycobacterium tuberculosis , Autofagia/genética , Beijing , Lisosomas/microbiología , Mycobacterium tuberculosis/genética , Fagosomas/metabolismo
14.
Int J Antimicrob Agents ; 58(3): 106385, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34161790

RESUMEN

Multidrug-resistant and extensively drug-resistant tuberculosis (M/XDR-TB) remains a global public-health challenge. Known mutations in quinolone resistance-determination regions cannot fully explain phenotypic fluoroquinolone (FQ) resistance in Mycobacterium tuberculosis (Mtb). The aim of this study was to look for novel mutations in Mtb associated with resistance to FQ drugs using whole-genome sequencing analysis. Whole-genome sequences of 659 Mtb strains, including 214 with phenotypic FQ resistance and 445 pan-susceptible isolates, were explored for mutations associated with FQ resistance overall and with resistance to individual FQ drugs (ofloxacin, levofloxacin, moxifloxacin and gatifloxacin). Three novel genes (recC, Rv2005c and PPE59) associated with FQ resistance were identified (P < 0.00001 based on screening analysis and absence of relevant mutations in a pan-susceptible validation set of 360 strains). Nine novel single nucleotide polymorphisms (SNPs), including in gyrB (G5383A and G6773A), gyrA (G7892A), recC (G725900C and G726857T/C), Rv2005c (C2251373G, G2251420C and C2251725T) and PPE59 (C3847269T), were used for diagnostic performance analysis. Enhancing the known SNP set with five of these novel SNPs, including gyrA [G7892A (Leu247Leu)], recC [G725900C (Leu893Leu) and G726857T/C (Arg484Arg)], Rv2005c [G2251420C (Pro205Arg)] and PPE59 [C3847269T (Asn35Asn)] increased the sensitivity of detection of FQ-resistant Mtb from 83.2% (178/214) to 86.9% (186/214) while maintaining 100% specificity (360/360). No specific mutation associated with resistance to only a single drug (ofloxacin, levofloxacin, moxifloxacin or gatifloxacin) was found. In conclusion, this study reports possible additional mutations associated with FQ resistance in Mtb.


Asunto(s)
Antituberculosos/uso terapéutico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/genética , Fluoroquinolonas/uso terapéutico , Mutación/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana
15.
Emerg Infect Dis ; 27(3): 813-822, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33622486

RESUMEN

Multidrug-resistant tuberculosis (MDR TB), pre-extensively drug-resistant tuberculosis (pre-XDR TB), and extensively drug-resistant tuberculosis (XDR TB) complicate disease control. We analyzed whole-genome sequence data for 579 phenotypically drug-resistant M. tuberculosis isolates (28% of available MDR/pre-XDR and all culturable XDR TB isolates collected in Thailand during 2014-2017). Most isolates were from lineage 2 (n = 482; 83.2%). Cluster analysis revealed that 281/579 isolates (48.5%) formed 89 clusters, including 205 MDR TB, 46 pre-XDR TB, 19 XDR TB, and 11 poly-drug-resistant TB isolates based on genotypic drug resistance. Members of most clusters had the same subset of drug resistance-associated mutations, supporting potential primary resistance in MDR TB (n = 176/205; 85.9%), pre-XDR TB (n = 29/46; 63.0%), and XDR TB (n = 14/19; 73.7%). Thirteen major clades were significantly associated with geography (p<0.001). Clusters of clonal origin contribute greatly to the high prevalence of drug-resistant TB in Thailand.


Asunto(s)
Mycobacterium tuberculosis , Preparaciones Farmacéuticas , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia , Tailandia , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
16.
Sci Rep ; 11(1): 4342, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619301

RESUMEN

Induction of host cell autophagy by starvation was shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of Mycobacterium tuberculosis reference strain H37Rv. Our previous study showed that strains belonging to M. tuberculosis Beijing genotype resisted starvation-induced autophagic elimination but the factors involved remained unclear. Here, we conducted RNA-Seq of macrophages infected with the autophagy-resistant Beijing strain (BJN) compared to macrophages infected with H37Rv upon autophagy induction by starvation. Results identified several genes uniquely upregulated in BJN-infected macrophages but not in H37Rv-infected cells, including those encoding Kxd1 and Plekhm2, which function in lysosome positioning towards the cell periphery. Unlike H37Rv, BJN suppressed enhanced lysosome positioning towards the perinuclear region and lysosomal delivery to its phagosome upon autophagy induction by starvation, while depletion of Kxd1 and Plekhm2 reverted such effects, resulting in restriction of BJN intracellular survival upon autophagy induction by starvation. Taken together, these data indicated that Kxd1 and Plekhm2 are important for the BJN strain to suppress lysosome positioning towards the perinuclear region and lysosomal delivery into its phagosome during autophagy induction by starvation to evade starvation-induced autophagic restriction.


Asunto(s)
Autofagia , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Lisosomas/microbiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/metabolismo , Tuberculosis/microbiología , Autofagia/genética , Proteínas Portadoras/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Anotación de Secuencia Molecular , Transcriptoma , Tuberculosis/genética , Tuberculosis/inmunología
17.
Sci Rep ; 11(1): 3199, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542438

RESUMEN

Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated "MKR superspreader", and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR's intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Colesterol/metabolismo , Interacciones Huésped-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Sistemas de Secreción Tipo VII/genética , Antígenos Bacterianos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Beijing/epidemiología , Biotransformación , Células Clonales , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Redes y Vías Metabólicas/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Células THP-1 , Tailandia/epidemiología , Transcripción Genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/patología , Sistemas de Secreción Tipo VII/efectos de los fármacos , Sistemas de Secreción Tipo VII/metabolismo
18.
PLoS One ; 15(12): e0244829, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382836

RESUMEN

Drug resistance (DR) remains a major challenge for tuberculosis (TB) control. Whole-genome sequencing (WGS) provides the highest genetic resolution for genotypic drug-susceptibility tests (DST). We compared DST profiles of 60 Mycobacterium tuberculosis isolates which were drug resistant according to agar proportion tests (one poly DR-TB, 34 multidrug-resistant TB and 25 extensively drug-resistant TB). We additionally performed minimum inhibitory concentration (MIC) tests using Sensititre MYCOTBI plates (MYCOTB) and a WGS-based DST. Agreement between WGS-based DST and MYCOTB was high for all drugs except ethambutol (65%) and ethionamide (62%). Isolates harboring the -15 c/t inhA promoter mutation had a significantly lower MIC for isoniazid than did isolates with the katG Ser315Thr mutation (p < 0.001). Similar patterns were seen for ethambutol (embB Gly406Asp vs. embB Met306Ile), streptomycin (gid Gly73Ala vs. rpsL Lys43Arg), moxifloxacin (gyrA Ala90Val vs. gyrA Asp94Gly) and rifabutin (rpoB Asp435Phe/Tyr/Val vs. rpoB Ser450Leu). For genotypic heteroresistance, isolates with lower proportion of mapped read tended to has lower MIC of anti-TB drugs than those with higher proportion. These results emphasize the high applicability of WGS for determination of DR-TB and the association of particular mutations with MIC levels.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adulto , Antituberculosos/uso terapéutico , Etambutol/farmacología , Etambutol/uso terapéutico , Etionamida/farmacología , Etionamida/uso terapéutico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Femenino , Humanos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Secuenciación Completa del Genoma
19.
Emerg Microbes Infect ; 9(1): 2632-2641, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33205698

RESUMEN

Tuberculosis disease (TB), caused by Mycobacterium tuberculosis, is a major public health issue in Thailand. The high prevalence of modern Beijing (Lineage 2.2.1) strains has been associated with multi- and extensively drug-resistant infections (MDR-, XDR-TB), complicating disease control. The impact of rarer proto-Beijing (L2.1) strains is less clear. In our study of thirty-seven L2.1 clinical isolates spanning thirteen years, we found a high prevalence of XDR-TB cases (32.4%). With ≤ 12 pairwise SNP distances, 43.2% of L2.1 patients belong to MDR-TB or XDR-TB transmission clusters suggesting a high level of clonal expansion across four Thai provinces. All XDR-TB (100%) were likely due to transmission rather than inadequate treatment. We found a 47 mutation signature and a partial deletion of the fadD14 gene in the circulating XDR-TB cluster, which can be used for surveillance of this rare and resilient M. tuberculosis strain-type that is causing increasing health burden. We also detected three novel deletion positions, a deletion of 1285 bp within desA3 (Rv3230c), large deletions in the plcB, plcA, and ppe38 gene which may play a role in the virulence, pathogenesis or evolution of the L2.1 strain-type.


Asunto(s)
Proteínas Bacterianas/genética , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Mutación , Mycobacterium tuberculosis/clasificación , Beijing , Evolución Clonal , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Genotipo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/patogenicidad , Filogenia , Filogeografía , Tailandia/epidemiología , Virulencia
20.
Infect Drug Resist ; 13: 3375-3382, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061484

RESUMEN

INTRODUCTION: Knowledge of the prevalence and distribution of multidrug-resistant tuberculosis (MDR-TB) genotypes in northern Thailand is still limited. An accurate, rapid, and cost-effective diagnostic of MDR-TB is crucial to improve treatment and control of increased MDR-TB. MATERIALS AND METHODS: The molecular diagnostic assays named "RIF-RD" and "INH-RD" were designed to detect rifampicin (RIF) and isoniazid (INH) resistance based on real-time PCR and high-resolution melting curve analysis. Applying the ∆Tm cutoff values, the RIF-RD and INH-RD were evaluated against the standard drug susceptibility testing (DST) using 107 and 103 clinical Mycobacterium tuberculosis (Mtb) isolates from northern Thailand. DNA sequence analysis of partial rpoB, katG, and inhA promoter of 73 Mtb isolates, which included 30 MDR-TB, was performed to elucidate the mutations involved with RIF and INH resistance. RESULTS: When compared with the phenotypic DST, RIF-RD targeting rpoB showed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 83.9, 98.6, 96.9, and 92.0%, respectively. The multiplex reaction of the INH-RD targeted both katG and inhA promoter showed high sensitivity, specificity, PPV, and NPV of 97.1, 94.2, 89.2, and 98.5%, respectively. Six patterns of rpoB mutation, predominately at codons 531 (50%) and 526 (40%) along with a rare S522L (3.33%) and D516V (3.33%), were detected. A single pattern of katG mutation (S315T) (63.3%) and four patterns of inhA promoter mutation, predominately -15 (C>T), were found. Approximately, 17% of MDR-TB strains possessed double mutations within the katG and inhA promoter. CONCLUSION: Up to 86.7% and 96.7% of MDR-TB could be accurately detected by RIF-RD and INH-RD, emphasizing its usefulness as a low unit price assay for rapid screening of MDR-TB, with confirmation of INH resistance in low and middle-income countries. The MDR-TB genotypes provided will be beneficial for TB control and the development of drug-resistant TB diagnostic technology in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...