Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109689, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706840

RESUMEN

The distinct folding accompanied by its polymorphic character renders DNA G-quadruplexes promising biomolecular building blocks to construct novel DNA-based and supramolecular assemblies. However, the highly polar nature of DNA limits the use of G-quadruplexes to water as a solvent. In addition, the archetypical G-quadruplex fold needs to be stabilized by metal-cations, which is usually a potassium ion. Here, we show that a noncovalent PEGylation process enabled by electrostatic interactions allows the first metal-free G-quadruplexes in organic solvents. Strikingly, incorporation of an iron-containing porphyrin renders the self-assembled metal-free G-quadruplex catalytically active in organic solvents. Hence, these "supraG4zymes" enable DNA-based catalysis in organic media. The results will allow the broad utilization of DNA G-quadruplexes in nonaqueous environments.

2.
Nucleic Acids Res ; 51(4): 1943-1959, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36715343

RESUMEN

Genomic regions with high guanine content can fold into non-B form DNA four-stranded structures known as G-quadruplexes (G4s). Extensive in vivo investigations have revealed that promoter G4s are transcriptional regulators. Little structural information exists for these G4s embedded within duplexes, their presumed genomic environment. Here, we report the 7.4 Å resolution structure and dynamics of a 28.5 kDa duplex-G4-duplex (DGD) model system using cryo-EM, molecular dynamics, and small-angle X-ray scattering (SAXS) studies. The DGD cryo-EM refined model features a 53° bend induced by a stacked duplex-G4 interaction at the 5' G-tetrad interface with a persistently unstacked 3' duplex. The surrogate complement poly dT loop preferably stacks onto the 3' G-tetrad interface resulting in occlusion of both 5' and 3' tetrad interfaces. Structural analysis shows that the DGD model is quantifiably more druggable than the monomeric G4 structure alone and represents a new structural drug target. Our results illustrate how the integration of cryo-EM, MD, and SAXS can reveal complementary detailed static and dynamic structural information on DNA G4 systems.


Asunto(s)
G-Cuádruplex , Dispersión del Ángulo Pequeño , Microscopía por Crioelectrón , Difracción de Rayos X , ADN/química
3.
Acc Chem Res ; 55(22): 3242-3252, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36282946

RESUMEN

G-quadruplexes (G4s) are distinctive four-stranded DNA or RNA structures found within cells that are thought to play functional roles in gene regulation and transcription, translation, recombination, and DNA damage/repair. While G4 structures can be uni-, bi-, or tetramolecular with respect to strands, folded unimolecular conformations are most significant in vivo. Unimolecular G4 can potentially form in sequences with runs of guanines interspersed with what will become loops in the folded structure: 5'GxLyGxLyGxLyGx, where x is typically 2-4 and y is highly variable. Such sequences are highly conserved and specifically located in genomes. In the folded structure, guanines from each run combine to form planar tetrads with four hydrogen-bonded guanine bases; these tetrads stack on one another to produce four strand segments aligned in specific parallel or antiparallel orientations, connected by the loop sequences. Three types of loops (lateral, diagonal, or "propeller") have been identified. The stacked tetrads form a central cavity that features strong coordination sites for monovalent cations that stabilize the G4 structure, with potassium or sodium preferred. A single monomeric G4 typically forms from a sequence containing roughly 20-30 nucleotides. Such short sequences have been the primary focus of X-ray crystallographic or NMR studies that have produced high-resolution structures of a variety of monomeric G4 conformations. These structures are often used as the basis for drug design efforts to modulate G4 function.We believe that the focus on monomeric G4 structures formed by such short sequences is perhaps myopic. Such short sequences for structural studies are often arbitrarily selected and removed from their native genomic sequence context, and then are often changed from their native sequences by base substitutions or deletions intended to optimize the formation of a homogeneous G4 conformation. We believe instead that G-quadruplexes prefer company and that in a longer natural sequence context multiple adjacent G4 units can form to combine into more complex multimeric G4 structures with richer topographies than simple monomeric forms. Bioinformatic searches of the human genome show that longer sequences with the potential for forming multiple G4 units are common. Telomeric DNA, for example, has a single-stranded overhang of hundreds of nucleotides with the requisite repetitive sequence with the potential for formation of multiple G4s. Numerous extended promoter sequences have similar potentials for multimeric G4 formation. X-ray crystallography and NMR methods are challenged by these longer sequences (>30 nt), so other tools are needed to explore the possible multimeric G4 landscape. We have implemented an integrated structural biology approach to address this challenge. This approach integrates experimental biophysical results with atomic-level molecular modeling and molecular dynamics simulations that provide quantitatively testable model structures. In every long sequence we have studied so far, we found that multimeric G4 structures readily form, with a surprising diversity of structures dependent on the exact native sequence used. In some cases, stable hairpin duplexes form along with G4 units to provide an even richer landscape. This Account provides an overview of our approach and recent progress and provides a new perspective on the G-quadruplex folding landscape.


Asunto(s)
G-Cuádruplex , Humanos , ADN/química , Telómero , Guanina/química , Simulación de Dinámica Molecular , Nucleótidos , Conformación de Ácido Nucleico
4.
PLoS One ; 17(6): e0270165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709230

RESUMEN

DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.


Asunto(s)
G-Cuádruplex , ADN/genética , Descubrimiento de Drogas , Ligandos , Regiones Promotoras Genéticas
5.
Nucleic Acids Res ; 50(7): 4127-4147, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35325198

RESUMEN

We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Dicroismo Circular , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
PLoS One ; 16(3): e0245675, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784306

RESUMEN

The protein POT1 (Protection of Telomeres 1) is an integral part of the shelterin complex that protects the ends of human chromosomes from degradation or end fusions. It is the only component of shelterin that binds single-stranded DNA. We describe here the application of two separate fluorescent thermal shift assays (FTSA) that provide quantitative biophysical characterization of POT1 stability and its interactions. The first assay uses Sypro Orange™ and monitors the thermal stability of POT1 and its binding under a variety of conditions. This assay is useful for the quality control of POT1 preparations, for biophysical characterization of its DNA binding and, potentially, as an efficient screening tool for binding of small molecule drug candidates. The second assay uses a FRET-labeled human telomeric G-quadruplex structure that reveals the effects of POT1 binding on thermal stability from the DNA frame of reference. These complementary assays provide efficient biophysical approaches for the quantitative characterization of multiple aspects of POT1 structure and function. The results from these assays provide thermodynamics details of POT1 folding, the sequence selectivity of its DNA binding and the thermodynamic profile for its binding to its preferred DNA binding sequence. Most significantly, results from these assays elucidate two mechanisms for the inhibition of POT1 -DNA interactions. The first is by competitive inhibition at the POT1 DNA binding site. The second is indirect and is by stabilization of G-quadruplex formation within the normal POT1 single-stranded DNA sequence to prevent POT1 binding.


Asunto(s)
Espectrometría de Fluorescencia , Proteínas de Unión a Telómeros/metabolismo , Temperatura , G-Cuádruplex , Humanos , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Complejo Shelterina , Telómero/química , Telómero/metabolismo , Proteínas de Unión a Telómeros/química
7.
Nucleic Acids Res ; 49(3): 1749-1768, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33469644

RESUMEN

Human telomeres contain the repeat DNA sequence 5'-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3' single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of the telomeric overhang. We find that the single-stranded sequences 5'-d(TTAGGG)n, with n = 8, 12 and 16, fold into multimeric structures containing the maximal number (2, 3 and 4, respectively) of contiguous G4 units with no long gaps between units. The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 units interact, at least transiently, at the interfaces between units to produce distinctive CD signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of ∼34 Å. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and coiling movements, which yield unique sites for drug targeting.


Asunto(s)
G-Cuádruplex , Telómero/química , Dicroismo Circular , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
Nucleic Acids Res ; 48(9): 4976-4991, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32232414

RESUMEN

The reaction mechanism by which the shelterin protein POT1 (Protection of Telomeres 1) unfolds human telomeric G-quadruplex structures is not fully understood. We report here kinetic, thermodynamic, hydrodynamic and computational studies that show that a conformational selection mechanism, in which POT1 binding is coupled to an obligatory unfolding reaction, is the most plausible mechanism. Stopped-flow kinetic and spectroscopic titration studies, along with isothermal calorimetry, were used to show that binding of the single-strand oligonucleotide d[TTAGGGTTAG] to POT1 is both fast (80 ms) and strong (-10.1 ± 0.3 kcal mol-1). In sharp contrast, kinetic studies showed the binding of POT1 to an initially folded 24 nt G-quadruplex structure is four orders of magnitude slower. Fluorescence, circular dichroism and analytical ultracentrifugation studies showed that POT1 binding is coupled to quadruplex unfolding, with a final complex with a stoichiometry of 2 POT1 per 24 nt DNA. The binding isotherm for the POT1-quadruplex interaction was sigmoidal, indicative of a complex reaction. A conformational selection model that includes equilibrium constants for both G-quadruplex unfolding and POT1 binding to the resultant single-strand provided an excellent quantitative fit to the experimental binding data. POT1 unfolded and bound to any conformational form of human telomeric G-quadruplex (antiparallel, hybrid, parallel monomers or a 48 nt sequence with two contiguous quadruplexes), but did not avidly interact with duplex DNA or with other G-quadruplex structures. Finally, molecular dynamics simulations provided a detailed structural model of a 2:1 POT1:DNA complex that is fully consistent with experimental biophysical results.


Asunto(s)
G-Cuádruplex , Proteínas de Unión a Telómeros/metabolismo , Telómero/química , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Complejo Shelterina , Proteínas de Unión a Telómeros/química , Termodinámica
9.
Nucleic Acids Res ; 48(10): 5720-5734, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32083666

RESUMEN

The structure of the 68 nt sequence with G-quadruplex forming potential within the hTERT promoter is disputed. One model features a structure with three stacked parallel G-quadruplex units, while another features an unusual duplex hairpin structure adjoined to two stacked parallel and antiparallel quadruplexes. We report here the results of an integrated structural biology study designed to distinguish between these possibilities. As part of our study, we designed a sequence with an optimized hairpin structure and show that its biophysical and biochemical properties are inconsistent with the structure formed by the hTERT wild-type sequence. By using circular dichroism, thermal denaturation, nuclear magnetic resonance spectroscopy, analytical ultracentrifugation, small-angle X-ray scattering, molecular dynamics simulations and a DNase I cleavage assay we found that the wild type hTERT core promoter folds into a stacked, three-parallel G-quadruplex structure. The hairpin structure is inconsistent with all of our experimental data obtained with the wild-type sequence. All-atom models for both structures were constructed using molecular dynamics simulations. These models accurately predicted the experimental hydrodynamic properties measured for each structure. We found with certainty that the wild-type hTERT promoter sequence does not form a hairpin structure in solution, but rather folds into a compact stacked three-G-quadruplex conformation.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Telomerasa/genética , Secuencia de Bases , Dicroismo Circular , ADN/química , Humanos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Desnaturalización de Ácido Nucleico , Dispersión del Ángulo Pequeño , Difracción de Rayos X
10.
PLoS One ; 14(12): e0226177, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31834895

RESUMEN

Mammalian and bird ribosomes are nearly twice the mass of prokaryotic ribosomes in part because of their extraordinarily long rRNA tentacles. Human rRNA tentacles are not fully observable in current three-dimensional structures and their conformations remain to be fully resolved. In previous work we identified sequences that favor G-quadruplexes in silico and in vitro in rRNA tentacles of the human large ribosomal subunit. We demonstrated by experiment that these sequences form G-quadruplexes in vitro. Here, using a more recent motif definition, we report additional G-quadruplex sequences on surfaces of both subunits of the human ribosome. The revised sequence definition reveals expansive arrays of potential G-quadruplex sequences on LSU tentacles. In addition, we demonstrate by a variety of experimental methods that fragments of the small subunit rRNA form G-quadruplexes in vitro. Prior to this report rRNA sequences that form G-quadruplexes were confined to the large ribosomal subunit. Our combined results indicate that the surface of the assembled human ribosome contains numerous sequences capable of forming G-quadruplexes on both ribosomal subunits. The data suggest conversion between duplexes and G-quadruplexes in response to association with proteins, ions, or other RNAs. In some systems it seems likely that the integrated population of RNA G-quadruplexes may be dominated by rRNA, which is the most abundant cellular RNA.


Asunto(s)
G-Cuádruplex , ARN Mensajero/química , ARN Ribosómico/química , Subunidades Ribosómicas/química , Ribosomas/química , Animales , Secuencia de Bases , Humanos , Conformación de Ácido Nucleico , Filogenia , Homología de Secuencia
11.
PLoS One ; 14(8): e0220765, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31430304

RESUMEN

The thermoanalytical technique differential scanning calorimetry (DSC) has been applied to characterize protein denaturation patterns (thermograms) in blood plasma samples and relate these to a subject's health status. The analysis and classification of thermograms is challenging because of the high-dimensionality of the dataset. There are various methods for group classification using high-dimensional data sets; however, the impact of using high-dimensional data sets for cancer classification has been poorly understood. In the present article, we proposed a statistical approach for data reduction and a parametric method (PM) for modeling of high-dimensional data sets for two- and three- group classification using DSC and demographic data. We compared the PM to the non-parametric classification method K-nearest neighbors (KNN) and the semi-parametric classification method KNN with dynamic time warping (DTW). We evaluated the performance of these methods for multiple two-group classifications: (i) normal versus cervical cancer, (ii) normal versus lung cancer, (iii) normal versus cancer (cervical + lung), (iv) lung cancer versus cervical cancer as well as for three-group classification: normal versus cervical cancer versus lung cancer. In general, performance for two-group classification was high whereas three-group classification was more challenging, with all three methods predicting normal samples more accurately than cancer samples. Moreover, specificity of the PM method was mostly higher or the same as KNN and DTW-KNN with lower sensitivity. The performance of KNN and DTW-KNN decreased with the inclusion of demographic data, whereas similar performance was observed for the PM which could be explained by the fact that the PM uses fewer parameters as compared to KNN and DTW-KNN methods and is thus less susceptible to the risk of overfitting. More importantly the accuracy of the PM can be increased by using a greater number of quantile data points and by the inclusion of additional demographic and clinical data, providing a substantial advantage over KNN and DTW-KNN methods.


Asunto(s)
Proteínas Sanguíneas/química , Rastreo Diferencial de Calorimetría/métodos , Neoplasias Pulmonares/diagnóstico , Desnaturalización Proteica , Neoplasias del Cuello Uterino/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Neoplasias Pulmonares/sangre , Masculino , Persona de Mediana Edad , Análisis de Regresión , Neoplasias del Cuello Uterino/sangre , Adulto Joven
12.
Methods Mol Biol ; 2035: 87-103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31444745

RESUMEN

Analytical ultracentrifugation is a powerful biophysical tool that provides information about G-quadruplex structure, stability, and binding reactivity. This chapter provides a simplified explanation of the method, along with examples of how it can be used to characterize G4 formation and to monitor small-molecule binding.


Asunto(s)
G-Cuádruplex , Ultracentrifugación/métodos , Peso Molecular , Relación Estructura-Actividad
13.
J Phys Chem Lett ; 10(5): 1146-1151, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30802054

RESUMEN

Circular dichroism and stopped-flow UV spectroscopies were used to investigate the thermodynamic stability and the folding pathway of d[TGAG3TG3TAG3TG3TA2] at 25 °C in solutions containing 25 mM KCl. Under these conditions the oligonucleotide adopts a thermally stable, all-parallel G-quadruplex topography containing three stacked quartets. K+-induced folding shows three resolved relaxation times, each with distinctive spectral changes. Folding is complete within 200 s. These data indicate a folding pathway that involves at least two populated intermediates, one of which seems to be an antiparallel structure that rearranges to the final all-parallel conformation. Molecular dynamics reveals a stereochemically plausible folding pathway that does not involve complete unfolding of the intermediate. The rate of unfolding was determined using complementary DNA to trap transiently unfolded states to form a stable duplex. As assessed by 1D-1H NMR and fluorescence spectroscopy, unfolding is extremely slow with only one observable rate-limiting relaxation time.

14.
PLoS One ; 13(4): e0195625, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29630682

RESUMEN

The Florida manatee (Trichechus manatus latirotris) is a threatened aquatic mammal in United States coastal waters. Over the past decade, the appearance of papillomavirus-induced lesions and viral papillomatosis in manatees has been a concern for those involved in the management and rehabilitation of this species. To date, three manatee papillomaviruses (TmPVs) have been identified in Florida manatees, one forming cutaneous lesions (TmPV1) and two forming genital lesions (TmPV3 and TmPV4). We identified DNA sequences with the potential to form G-quadruplex structures (G4) across the three genomes. G4 were located on both DNA strands and across coding and non-coding regions on all TmPVs, offering multiple targets for viral control. Although G4 have been identified in several viral genomes, including human PVs, most research has focused on canonical structures comprised of three G-tetrads. In contrast, the vast majority of sequences we identified would allow the formation of non-canonical structures with only two G-tetrads. Our biophysical analysis confirmed the formation of G4 with parallel topology in three such sequences from the E2 region. Two of the structures appear comprised of multiple stacked two G-tetrad structures, perhaps serving to increase structural stability. Computational analysis demonstrated enrichment of G4 sequences on all TmPVs on the reverse strand in the E2/E4 region and on both strands in the L2 region. Several G4 sequences occurred at similar regional locations on all PVs, most notably on the reverse strand in the E2 region. In other cases, G4 were identified at similar regional locations only on PVs forming genital lesions. On all TmPVs, G4 sequences were located in the non-coding region near putative E2 binding sites. Together, these findings suggest that G4 are possible regulatory elements in TmPVs.


Asunto(s)
ADN Viral/química , ADN Viral/genética , G-Cuádruplex , Papillomaviridae/genética , Infecciones por Papillomavirus/veterinaria , Trichechus manatus/virología , Animales , Secuencia de Bases , Fenómenos Biofísicos , Florida , Genoma Viral , Humanos , Simulación de Dinámica Molecular , Papillomaviridae/química , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/virología
15.
Nucleic Acids Res ; 46(7): e41, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29361140

RESUMEN

We describe a rapid fluorescence indicator displacement assay (R-FID) to evaluate the affinity and the selectivity of compounds binding to different DNA structures. We validated the assay using a library of 30 well-known nucleic acid binders containing a variety chemical scaffolds. We used a combination of principal component analysis and hierarchical clustering analysis to interpret the results obtained. This analysis classified compounds based on selectivity for AT-rich, GC-rich and G4 structures. We used the FID assay as a secondary screen to test the binding selectivity of an additional 20 compounds selected from the NCI Diversity Set III library that were identified as G4 binders using a thermal shift assay. The results showed G4 binding selectivity for only a few of the 20 compounds. Overall, we show that this R-FID assay, coupled with PCA and HCA, provides a useful tool for the discovery of ligands selective for particular nucleic acid structures.


Asunto(s)
ADN/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Conformación de Ácido Nucleico , Relación Estructura-Actividad , Benzotiazoles/química , Sitios de Unión/genética , Análisis por Conglomerados , ADN/química , Colorantes Fluorescentes , G-Cuádruplex , Ligandos , Oligonucleótidos/química , Oligonucleótidos/genética , Análisis de Componente Principal , Quinolinas/química
16.
Angew Chem Int Ed Engl ; 57(24): 7171-7175, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29076232

RESUMEN

A curated library of circular dichroism spectra of 23 G-quadruplexes of known structure was built and analyzed. The goal of this study was to use this reference library to develop an algorithm to derive quantitative estimates of the secondary structure content of quadruplexes from their experimental CD spectra. Principal component analysis and singular value decomposition were used to characterize the reference spectral library. CD spectra were successfully fit to obtain estimates of the amounts of base steps in anti-anti, syn-anti or anti-syn conformations, in diagonal or lateral loops, or in other conformations. The results show that CD spectra of nucleic acids can be analyzed to obtain quantitative structural information about secondary structure content in an analogous way to methods used to analyze protein CD spectra.


Asunto(s)
Dicroismo Circular/métodos , ADN/química , G-Cuádruplex , Algoritmos , Modelos Moleculares , Conformación de Ácido Nucleico
17.
PLoS One ; 12(11): e0186398, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29149219

RESUMEN

OBJECTIVE: Plasma thermograms (thermal stability profiles of blood plasma) are being utilized as a new diagnostic approach for clinical assessment. In this study, we investigated the ability of plasma thermograms to classify systemic lupus erythematosus (SLE) patients versus non SLE controls using a sample of 300 SLE and 300 control subjects from the Lupus Family Registry and Repository. Additionally, we evaluated the heterogeneity of thermograms along age, sex, ethnicity, concurrent health conditions and SLE diagnostic criteria. METHODS: Thermograms were visualized graphically for important differences between covariates and summarized using various measures. A modified linear discriminant analysis was used to segregate SLE versus control subjects on the basis of the thermograms. Classification accuracy was measured based on multiple training/test splits of the data and compared to classification based on SLE serological markers. RESULTS: Median sensitivity, specificity, and overall accuracy based on classification using plasma thermograms was 86%, 83%, and 84% compared to 78%, 95%, and 86% based on a combination of five antibody tests. Combining thermogram and serology information together improved sensitivity from 78% to 86% and overall accuracy from 86% to 89% relative to serology alone. Predictive accuracy of thermograms for distinguishing SLE and osteoarthritis / rheumatoid arthritis patients was comparable. Both gender and anemia significantly interacted with disease status for plasma thermograms (p<0.001), with greater separation between SLE and control thermograms for females relative to males and for patients with anemia relative to patients without anemia. CONCLUSION: Plasma thermograms constitute an additional biomarker which may help improve diagnosis of SLE patients, particularly when coupled with standard diagnostic testing. Differences in thermograms according to patient sex, ethnicity, clinical and environmental factors are important considerations for application of thermograms in a clinical setting.


Asunto(s)
Lupus Eritematoso Sistémico/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Rastreo Diferencial de Calorimetría , Estudios de Casos y Controles , Femenino , Humanos , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/clasificación , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
18.
Nucleic Acids Res ; 45(22): 13056-13067, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29069417

RESUMEN

G-quadruplexes (G4) within oncogene promoters are considered to be promising anticancer targets. However, often they undergo complex structural rearrangements that preclude a precise description of the optimal target. Moreover, even when solved structures are available, they refer to the thermodynamically stable forms but little or no information is supplied about their complex multistep folding pathway. To shed light on this issue, we systematically followed the kinetic behavior of a G-rich sequence located within the c-KIT proximal promoter (kit2) in the presence of monovalent cations K+ and Na+. A very short-lived intermediate was observed to start the G4 folding process in both salt conditions. Subsequently, the two pathways diverge to produce distinct thermodynamically stable species (parallel and antiparallel G-quadruplex in K+ and Na+, respectively). Remarkably, in K+-containing solution a branched pathway is required to drive the wild type sequence to distribute between a monomeric and dimeric G-quadruplex. Our approach has allowed us to identify transient forms whose relative abundance is regulated by the environment; some of them were characterized by a half-life within the timescale of physiological DNA processing events and thus may represent possible unexpected targets for ligands recognition.


Asunto(s)
ADN/química , G-Cuádruplex , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-kit/genética , Algoritmos , Dicroismo Circular , ADN/genética , Dimerización , Semivida , Humanos , Cinética , Modelos Moleculares , Potasio/química , Sodio/química , Termodinámica
19.
Curr Protoc Nucleic Acid Chem ; 68: 17.8.1-17.8.16, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252181

RESUMEN

Circular dichroism (CD) is a phenomenon that arises from the differential absorption of left- and right-handed circularly polarized light, and may be seen with optically active molecules. CD spectroscopy provides useful spectral signatures for biological macromolecules in solution, and provides low-resolution structural information about macromolecular conformation. CD spectroscopy is particularly useful for monitoring conformational changes in macromolecules upon environmental perturbations. G-quadruplex structures show unique CD spectral signatures, and CD is an important tool for characterizing their formation and global structure. This protocol offers step-by-step methods for determining reliable and reproducible CD spectra of quadruplex structures and normalizing the spectra for presentation. CD spectra properly normalized with respect to quadruplex concentration and path length are required to facilitate accurate comparison of results among laboratories. The standard operating procedures proposed are recommended to make such comparison accurate and informative. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Dicroismo Circular , ADN/química , G-Cuádruplex , Conformación de Ácido Nucleico
20.
Artif Organs ; 41(4): 351-358, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28321886

RESUMEN

The development of a blood substitute is urgent due to blood shortages and potential communicable diseases. A novel method, inside-out PEGylation, has been used here to conjugate a multiarm maleimide-PEG (Mal-PEG) to ß-cross-linked (ßXL-Hb) hemoglobin (Hb) tetramers through the Cys ß93 residues. This method produces a polymer with a single PEG backbone that is surrounded by multiple proteins, rather than coating a single protein with multiple PEG chains. Electrophoresis under denaturing conditions showed a large molecular weight species. Gel filtration chromatography and analytical ultracentrifugation determined the most prevalent species had three ßXL-Hb to one Mal-PEG. Thermal denaturation studies showed that the cross-linked and PEGylated species were more stable than native Hb. Cross-linking under oxy-conditions produced a high oxygen affinity Hb species (P50  = 9.18 Torr), but the oxygen affinity was not significantly altered by PEGylation (P50  = 9.67 Torr). Inside-out PEGylation can be used to produce a hemoglobin-based oxygen carrier and potentially for other multiprotein complexes.


Asunto(s)
Sustitutos Sanguíneos/química , Reactivos de Enlaces Cruzados/química , Composición de Medicamentos/métodos , Hemoglobinas/química , Maleimidas/química , Polietilenglicoles/química , Animales , Sustitutos Sanguíneos/síntesis química , Bovinos , Cromatografía en Gel , Hemoglobinas/síntesis química , Peso Molecular , Oxígeno/metabolismo , Polietilenglicoles/síntesis química , Desnaturalización Proteica , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...