Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38883732

RESUMEN

Background: NLRP2 belongs to the subcortical maternal complex (SCMC) of mammalian oocytes and preimplantation embryos. This multiprotein complex, encoded by maternal-effect genes, plays a pivotal role in the zygote-to-embryo transition, early embryogenesis, and epigenetic (re)programming. The maternal inactivation of genes encoding SCMC proteins has been linked to infertility and subfertility in mice and humans. However, the underlying molecular mechanisms for the diverse functions of the SCMC, particularly how this cytoplasmic structure influences DNA methylation, which is a nuclear process, are not fully understood. Results: We undertook joint transcriptome and DNA methylome profiling of pre-ovulatory germinal-vesicle oocytes from Nlrp2-null, heterozygous (Het), and wild-type (WT) female mice. We identified numerous differentially expressed genes (DEGs) in Het and Nlrp2-null when compared to WT oocytes. The genes for several crucial factors involved in oocyte transcriptome modulation and epigenetic reprogramming, such as DNMT1, UHRF1, KDM1B and ZFP57 were overexpressed in Het and Nlrp2-null oocytes. Absence or reduction of Nlrp2, did not alter the distinctive global DNA methylation landscape of oocytes, including the bimodal pattern of the oocyte methylome. Additionally, although the methylation profile of germline differentially methylated regions (gDMRs) of imprinted genes was preserved in oocytes of Het and Nlrp2-null mice, we found altered methylation in oocytes of both genotypes at a small percentage of the oocyte-characteristic hyper- and hypomethylated domains. Through a tiling approach, we identified specific DNA methylation differences between the genotypes, with approximately 1.3% of examined tiles exhibiting differential methylation in Het and Nlrp2-null compared to WT oocytes. Conclusions: Surprisingly, considering the well-known correlation between transcription and DNA methylation in developing oocytes, we observed no correlation between gene expression differences and gene-body DNA methylation differences in Nlrp2-null versus WT oocytes or Het versus WT oocytes. We therefore conclude that post-transcriptional changes in the stability of transcripts rather than altered transcription is primarily responsible for transcriptome differences in Nlrp2-null and Het oocytes.

2.
Reprod Sci ; 31(1): 173-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658178

RESUMEN

Human embryonic stem cells (hESCs) cultured in media containing bone morphogenic protein 4 (BMP4; B) differentiate into trophoblast-like cells. Supplementing media with inhibitors of activin/nodal signaling (A83-01) and of fibroblast growth factor 2 (PD173074) suppresses mesoderm and endoderm formation and improves specification of trophoblast-like lineages, but with variable effectiveness. We compared differentiation in four BMP4-containing media: mTeSR1-BMP4 only, mTeSR1-BAP, basal medium with BAP (basal-BAP), and a newly defined medium, E7-BAP. These media variably drive early differentiation towards trophoblast-like lineages with upregulation of early trophoblast markers CDX2 and KRT7 and downregulation of pluripotency markers (OCT4 and NANOG). As expected, based on differences between media in FGF2 and its inhibitors, downregulation of mesendoderm marker EOMES was variable between media. By day 7, only hESCs grown in E7-BAP or basal-BAP expressed HLA-G protein, indicating the presence of cells with extravillous trophoblast characteristics. Expression of HLA-G and other differentiation markers (hCG, KRT7, and GCM1) was highest in basal-BAP, suggesting a faster differentiation in this medium, but those cultures were more inhomogeneous and still expressed some endodermal and pluripotency markers. In E7-BAP, HLA-G expression increased later and was lower. There was also a low but maintained expression of some C19MC miRNAs, with more CpG hypomethylation of the ELF5 promoter, suggesting that E7-BAP cultures differentiate slower along the trophoblast lineage. We conclude that while all protocols drive differentiation into trophoblast lineages with varying efficiency, they have advantages and disadvantages that must be considered when selecting a protocol for specific experiments.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Activinas/farmacología , Activinas/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Antígenos HLA-G , Células Madre Embrionarias Humanas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Trofoblastos/metabolismo
3.
Reprod Sci ; 30(9): 2780-2793, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36976514

RESUMEN

The subcortical maternal complex (SCMC) is a multiprotein complex in oocytes and preimplantation embryos that is encoded by maternal effect genes. The SCMC is essential for zygote-to-embryo transition, early embryogenesis, and critical zygotic cellular processes, including spindle positioning and symmetric division. Maternal deletion of Nlrp2, which encodes an SCMC protein, results in increased early embryonic loss and abnormal DNA methylation in embryos. We performed RNA sequencing on pools of meiosis II (MII) oocytes from wild-type and Nlrp2-null female mice that were isolated from cumulus-oocyte complexes (COCs) after ovarian stimulation. Using a mouse reference genome-based analysis, we found 231 differentially expressed genes (DEGs) in Nlrp2-null compared to WT oocytes (123 up- and 108 downregulated; adjusted p < 0.05). The upregulated genes include Kdm1b, a H3K4 histone demethylase required during oocyte development for the establishment of DNA methylation marks at CpG islands, including those at imprinted genes. The identified DEGs are enriched for processes involved in neurogenesis, gland morphogenesis, and protein metabolism and for post-translationally methylated proteins. When we compared our RNA sequencing data to an oocyte-specific reference transcriptome that contains many previously unannotated transcripts, we found 228 DEGs, including genes not identified with the first analysis. Interestingly, 68% and 56% of DEGs from the first and second analyses, respectively, overlap with oocyte-specific hyper- and hypomethylated domains. This study shows that there are substantial changes in the transcriptome of mouse MII oocytes from female mice with loss of function of Nlrp2, a maternal effect gene that encodes a member of the SCMC.


Asunto(s)
Histona Demetilasas , Transcriptoma , Femenino , Animales , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Herencia Materna , Oocitos/metabolismo , Proteínas/metabolismo
4.
J Biomol Struct Dyn ; 40(21): 10940-10951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34423747

RESUMEN

Hereditary hearing impairment (HI) is a common disease with the highest incidence among sensory defects. Several genes have been identified to affect stereocilia structure causing HI, including the unconventional myosin3A. Interestingly, we noticed that variants in MYO3A gene have been previously found to cause variable HI onset and severity. Using clinical exome sequencing, we identified a novel pathogenic variant p.(Lys50Arg) in the MYO3A kinase domain (MYO3A-KD). Previous in vitro studies supported its damaging effect as a 'kinase-dead' mutant. We further analyzed this variation through molecular dynamics which predicts that changes in flexibility of MYO3A structure would influence the protein-ATP binding properties. This Lys50Arg mutation segregated with congenital profound non-syndromic HI. To better investigate this variability, we collected previously identified MYO3A-KDs variants, p.(Tyr129Cys), p.(His142Gln) and p.(Pro189Thr), and built both wild type and mutant 3 D MYO3A-KD models to assess their impact on the protein structure and function. Our results suggest that KD mutations could either cause a congenital profound form of HI, when particularly affecting the kinase activity and preventing the auto-phosphorylation of the motor, or a late onset and progressive form, when partially or completely inactivating the MYO3A protein. In conclusion, we report a novel pathogenic variant affecting the ATP-binding site within the MYO3A-KD causing congenital profound HI. Through computational approaches we provide a deeper understanding on the correlation between the effects of MYO3A-KD mutations and the variable hearing phenotypes. To the best of our knowledge this is the first study to correlate mutations' genotypes with the variable phenotypes of DFNB30.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Miosina Tipo III , Humanos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Mutación , Adenosina Trifosfato , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/genética
5.
Genes (Basel) ; 12(8)2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34440388

RESUMEN

Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these 'imprinted' genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in 'molar' pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.


Asunto(s)
Metilación de ADN , Impresión Genómica , Células Germinativas , Mutación , Epigénesis Genética , Femenino , Humanos
6.
Prenat Diagn ; 41(10): 1202-1214, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33974713

RESUMEN

Investigators have long been interested in the natural phenomenon of fetal and placental cell trafficking into the maternal circulation. The scarcity of these circulating cells makes their detection and isolation technically challenging. However, as a DNA source of fetal origin not mixed with maternal DNA, they have the potential of considerable benefit over circulating cell-free DNA-based noninvasive prenatal genetic testing (NIPT). Endocervical trophoblasts, which are less rare but more challenging to recover are also being investigated as an approach for cell-based NIPT. We review published studies from around the world describing both forms of cell-based NIPT and highlight the different approaches' advantages and drawbacks. We also offer guidance for developing a sound cell-based NIPT protocol.


Asunto(s)
Pruebas Prenatales no Invasivas/métodos , Células/microbiología , Femenino , Humanos , Pruebas Prenatales no Invasivas/instrumentación , Pruebas Prenatales no Invasivas/tendencias , Placenta/citología , Placenta/microbiología , Embarazo
7.
Reprod Sci ; 28(7): 1850-1865, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33090377

RESUMEN

Nlrp2 encodes a protein of the oocyte subcortical maternal complex (SCMC), required for embryo development. We previously showed that loss of maternal Nlrp2 in mice causes subfertility, smaller litters with birth defects, and growth abnormalities in offspring, indicating that Nlrp2 is a maternal effect gene and that all embryos from Nlrp2-deficient females that were cultured in vitro arrested before the blastocysts stage. Here, we used time-lapse microscopy to examine the development of cultured embryos from superovulated Nlrp2-deficient and wild-type mice after in vivo and in vitro fertilization. Embryos from Nlrp2-deficient females had similar abnormal cleavage and fragmentation and arrested by blastocyst stage, irrespective of fertilization mode. This indicates that in vitro fertilization does not further perturb or improve the development of cultured embryos. We also transferred embryos from superovulated Nlrp2-deficient and wild-type females to wild-type recipients to investigate if the abnormal reproductive outcomes of Nlrp2-deficient females are primarily driven by oocyte dysfunction or if a suboptimal intra-uterine milieu is a necessary factor. Pregnancies with transferred embryos from Nlrp2-deficient females produced smaller litters, stillbirths, and offspring with birth defects and growth abnormalities. This indicates that the reproductive phenotype is oocyte-specific and is not rescued by development in a wild-type uterus. We further found abnormal DNA methylation at two maternally imprinted loci in the kidney of surviving young adult offspring, confirming persistent DNA methylation disturbances in surviving offspring. These findings have implications for fertility treatments for women with mutations in NLRP2 and other genes encoding SCMC proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Desarrollo Embrionario/fisiología , Fertilización In Vitro , Oocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Blastocisto/metabolismo , Fragmentación del ADN , Metilación de ADN , Técnicas de Cultivo de Embriones , Transferencia de Embrión , Femenino , Ratones , Embarazo , Resultado del Embarazo , Superovulación
8.
Eur J Hum Genet ; 27(9): 1456-1465, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31053783

RESUMEN

Hearing impairment (HI) is characterized by extensive genetic heterogeneity. To determine the population-specific contribution of known autosomal recessive nonsyndromic (ARNS)HI genes and variants to HI etiology; pathogenic and likely pathogenic (PLP) ARNSHI variants were selected from ClinVar and the Deafness Variation Database and their frequencies were obtained from gnomAD for seven populations. ARNSHI prevalence due to PLP variants varies greatly by population ranging from 96.9 affected per 100,000 individuals for Ashkenazi Jews to 5.2 affected per 100,000 individuals for Africans/African Americans. For Europeans, Finns have the lowest prevalence due to ARNSHI PLP variants with 9.5 affected per 100,000 individuals. For East Asians, Latinos, non-Finish Europeans, and South Asians, ARNSHI prevalence due to PLP variants ranges from 17.1 to 33.7 affected per 100,000 individuals. ARNSHI variants that were previously reported in a single ancestry or family were observed in additional populations, e.g., USH1C p.(Q723*) reported in a Chinese family was the most prevalent pathogenic variant observed in gnomAD for African/African Americans. Variability between populations is due to how extensively ARNSHI has been studied, ARNSHI prevalence and ancestry specific ARNSHI variant architecture which is impacted by population history. Our study demonstrates that additional gene and variant discovery studies are necessary for all populations and particularly for individuals of African ancestry.


Asunto(s)
Sordera/diagnóstico , Sordera/genética , Genes Recesivos , Predisposición Genética a la Enfermedad , Variación Genética , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Alelos , Mapeo Cromosómico , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos
9.
Hum Genet ; 138(6): 593-600, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30982135

RESUMEN

Postaxial polydactyly (PAP) is a common limb malformation that often leads to cosmetic and functional complications. Molecular evaluation of polydactyly can serve as a tool to elucidate genetic and signaling pathways that regulate limb development, specifically, the anterior-posterior specification of the limb. To date, only five genes have been identified for nonsyndromic PAP: FAM92A, GLI1, GLI3, IQCE and ZNF141. In this study, two Pakistani multiplex consanguineous families with autosomal recessive nonsyndromic PAP were clinically and molecularly evaluated. From both pedigrees, a DNA sample from an affected member underwent exome sequencing. In each family, we identified a segregating frameshift (c.591dupA [p.(Q198Tfs*21)]) and nonsense variant (c.2173A > T [p.(K725*)]) in KIAA0825 (also known as C5orf36). Although KIAA0825 encodes a protein of unknown function, it has been demonstrated that its murine ortholog is expressed during limb development. Our data contribute to the establishment of a catalog of genes important in limb patterning, which can aid in diagnosis and obtaining a better understanding of the biology of polydactyly.


Asunto(s)
Dedos/anomalías , Genes Recesivos/genética , Predisposición Genética a la Enfermedad/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Polidactilia/genética , Dedos del Pie/anomalías , Animales , Consanguinidad , Salud de la Familia , Femenino , Dedos/patología , Genotipo , Humanos , Masculino , Ratones Endogámicos C57BL , Linaje , Fenotipo , Polidactilia/patología , Dedos del Pie/patología , Secuenciación del Exoma/métodos
10.
Eur J Hum Genet ; 27(6): 869-878, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30872814

RESUMEN

Roma are a socially and culturally distinct isolated population with genetically divergent subisolates, residing mainly across Central, Southern, and Eastern Europe. We evaluated the genetic etiology of hearing impairment (HI) in 15 Hungarian Roma families through exome sequencing. A family with autosomal dominant non-syndromic HI segregating a rare variant in the Calponin-homology 2 domain of PLS1, or Plastin 1 [p.(Leu363Phe)] was identified. Young adult Pls1 knockout mice have progressive HI and show morphological defects to their inner hair cells. There is evidence that PLS1 is important in the preservation of adult stereocilia and normal hearing. Four families segregated the European ancestral variant c.35delG [p.(Gly12fs)] in GJB2, and one family was homozygous for p.(Trp24*), an Indian subcontinent ancestral variant which is common amongst Roma from Slovakia, Czech Republic, and Spain. We also observed variants in known HI genes USH1G, USH2A, MYH9, MYO7A, and a splice site variant in MANBA (c.2158-2A>G) in a family with HI, intellectual disability, behavioral problems, and respiratory inflammation, which was previously reported in a Czech Roma family with similar features. Lastly, using multidimensional scaling and ADMIXTURE analyses, we delineate the degree of Asian/European admixture in the HI families understudy, and show that Roma individuals carrying the GJB2 p.(Trp24*) and MANBA c.2158-2A>G variants have a more pronounced South Asian background, whereas the other hearing-impaired Roma display an ancestral background similar to Europeans. We demonstrate a diverse genetic HI etiology in the Hungarian Roma and identify a new gene PLS1, for autosomal dominant human non-syndromic HI.


Asunto(s)
Trastornos de los Cromosomas/genética , Genes Dominantes , Sitios Genéticos , Pérdida Auditiva/genética , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/genética , Mutación Missense , Romaní/genética , Sustitución de Aminoácidos , Niño , Preescolar , Femenino , Humanos , Hungría , Masculino
11.
J Hum Genet ; 64(2): 153-160, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30498240

RESUMEN

Sinoatrial node dysfunction and deafness (SANDD) syndrome is rare and characterized by a low heart beat and severe-to-profound deafness. Additional features include fatigue, dizziness, and episodic syncope. The sinoatrial node (SAN) drives heart automaticity and continuously regulates heart rate. The CACNA1D gene encoding the Cav1.3 protein expressed in inner hair cells, atria and SAN, induces loss-of-function in channel activity and underlies SANDD. To date, only one variant c.1208_1209insGGG:p.(G403_V404insG) has been reported for SANDD syndrome. We studied five Pakistani families with SANDD and characterized a new missense variant p.(A376V) in CACNA1D in one family, and further characterized the founder variant p.(G403_V404insG) in four additional pedigrees. We show that affected individuals in the four families which segregate p.(G403_V404insG) share a 1.03 MB haplotype on 3p21.1 suggesting they share a common distant ancestor. In conclusion, we identified new and known variants in CACNA1D in five Pakistani families with SANDD. This study is of clinical importance as the CACNA1D founder variant is only observed in families from the Khyber Pakhtunkhwa (KPK) province, in Pakistan. Therefore, screening patients with congenital deafness for SAN dysfunction in this province could ensure adequate follow-up and prevent cardiac failure associated with SAN.


Asunto(s)
Canales de Calcio Tipo L/genética , Sordera/genética , Cardiopatías/genética , Mutación , Nodo Sinoatrial/patología , Adolescente , Sordera/complicaciones , Sordera/patología , Femenino , Cardiopatías/complicaciones , Cardiopatías/patología , Humanos , Masculino , Pakistán , Linaje , Pronóstico , Nodo Sinoatrial/metabolismo
12.
J Bone Miner Res ; 34(2): 375-386, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30395363

RESUMEN

Polydactyly is a common congenital anomaly of the hand and foot. Postaxial polydactyly (PAP) is characterized by one or more posterior or postaxial digits. In a Pakistani family with autosomal recessive nonsyndromic postaxial polydactyly type A (PAPA), we performed genomewide genotyping, linkage analysis, and exome and Sanger sequencing. Exome sequencing revealed a homozygous nonsense variant (c.478C>T, p.[Arg160*]) in the FAM92A gene within the mapped region on 8q21.13-q24.12 that segregated with the PAPA phenotype. We found that FAM92A is expressed in the developing mouse limb and E11.5 limb bud including the progress zone and the apical ectodermal ridge, where it strongly localizes at the cilia level, suggesting an important role in limb patterning. The identified variant leads to a loss of the FAM92A/Chibby1 complex that is crucial for ciliogenesis and impairs the recruitment and the colocalization of FAM92A with Chibby1 at the base of the cilia. In addition, we show that Fam92a-/- homozygous mice also exhibit an abnormal digit morphology, including metatarsal osteomas and polysyndactyly, in addition to distinct abnormalities on the deltoid tuberosity of their humeri. In conclusion, we present a new nonsyndromic PAPA ciliopathy due to a loss-of-function variant in FAM92A. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Ciliopatías , Codón sin Sentido , Exoma , Dedos/anomalías , Homocigoto , Polidactilia , Proteínas , Dedos del Pie/anomalías , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Femenino , Dedos/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Polidactilia/genética , Polidactilia/metabolismo , Polidactilia/patología , Proteínas/genética , Proteínas/metabolismo , Dedos del Pie/patología , Secuenciación del Exoma
13.
Hum Mutat ; 40(1): 53-72, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30303587

RESUMEN

Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.


Asunto(s)
Segregación Cromosómica/genética , Consanguinidad , Pérdida Auditiva/genética , Familia , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación/genética , Pakistán , Linaje
14.
Hum Genet ; 137(9): 735-752, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30167849

RESUMEN

Identification of Mendelian genes for neurodevelopmental disorders using exome sequencing to study autosomal recessive (AR) consanguineous pedigrees has been highly successful. To identify causal variants for syndromic and non-syndromic intellectual disability (ID), exome sequencing was performed using DNA samples from 22 consanguineous Pakistani families with ARID, of which 21 have additional phenotypes including microcephaly. To aid in variant identification, homozygosity mapping and linkage analysis were performed. DNA samples from affected family member(s) from every pedigree underwent exome sequencing. Identified rare damaging exome variants were tested for co-segregation with ID using Sanger sequencing. For seven ARID families, variants were identified in genes not previously associated with ID, including: EI24, FXR1 and TET3 for which knockout mouse models have brain defects; and CACNG7 and TRAPPC10 where cell studies suggest roles in important neural pathways. For two families, the novel ARID genes CARNMT1 and GARNL3 lie within previously reported ID microdeletion regions. We also observed homozygous variants in two ID candidate genes, GRAMD1B and TBRG1, for which each has been previously reported in a single family. An additional 14 families have homozygous variants in established ID genes, of which 11 variants are novel. All ARID genes have increased expression in specific structures of the developing and adult human brain and 91% of the genes are differentially expressed in utero or during early childhood. The identification of novel ARID candidate genes and variants adds to the knowledge base that is required to further understand human brain function and development.


Asunto(s)
Genes Recesivos , Marcadores Genéticos , Discapacidad Intelectual/genética , Mutación , Trastornos del Neurodesarrollo/genética , Adulto , Consanguinidad , Familia , Femenino , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/complicaciones , Linaje
15.
Invest Ophthalmol Vis Sci ; 59(11): 4552-4557, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30208423

RESUMEN

Purpose: Retinitis pigmentosa (RP) is a genetically heterogeneous trait with autosomal-recessive (ar) inheritance underlying 50% of genetic disease cases. Sixty-one arRP genes have been identified, and recently, DHX38 has been reported as a potential candidate gene for arRP with only a single family reported with a variant of unknown significance. We identified a missense variant in DHX38 that co-segregates with the arRP phenotype in two Pakistani families confirming the involvement of DHX38 in the etiology of early-onset RP. Methods: Exome sequencing was performed using two DNA samples from affected members of Pakistani families (MA88 and MA157) with early onset arRP. Sanger sequencing of DNA samples from all family members confirmed the segregation of candidate variant within both families. Results: A novel missense DHX38 variant c.971G>A; p.(Arg324Gln) was identified which segregates with the arRP phenotype and yielded a logarithm of the odds (LOD) score of 5.0 and 4.3 for families MA88 and MA157, respectively. This variant is predicted to be conserved and deleterious by several bioinformatics tools. Conclusions: We identified a second deleterious DHX38 variant that segregates with arRP in two families, providing additional evidence that DHX38 is involved in RP etiology. DHX38 encodes for pre-mRNA splicing factor PRP16, which is important in catalyzing pre-mRNA splicing.


Asunto(s)
ARN Helicasas DEAD-box/genética , Mutación Missense , Factores de Empalme de ARN/genética , Retinitis Pigmentosa/genética , Adolescente , Adulto , Catarata/genética , Biología Computacional , Femenino , Genes Recesivos , Estudios de Asociación Genética , Ligamiento Genético , Humanos , Masculino , Mapeo Nucleótido , Oftalmoscopía , Linaje , Análisis de Secuencia de ADN , Secuenciación del Exoma , Adulto Joven
16.
J Hum Genet ; 63(11): 1099-1107, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30177809

RESUMEN

LHFPL5, the gene for DFNB67, underlies autosomal recessive nonsyndromic hearing impairment. We identified seven Pakistani families that mapped to 6p21.31, which includes the LHFPL5 gene. Sanger sequencing of LHFPL5 using DNA samples from hearing impaired and unaffected members of these seven families identified four variants. Among the identified variants, two were novel: one missense c.452 G > T (p.Gly151Val) and one splice site variant (c.*16 + 1 G > A) were each identified in two families. Two known variants: c.250delC (p.Leu84*) and c.380 A > G (p.Tyr127Cys) were also observed in two families and a single family, respectively. Nucleotides c.452G and c.*16 + 1G and amino-acid residue p.Gly151 are under strong evolutionary conservation. In silico bioinformatics analyses predicted these variants to be damaging. The splice site variant (c.*16 + 1 G > A) is predicted to affect pre-mRNA splicing and a loss of the 5' donor splice site in the 3'-untranslated region (3'-UTR). Further analysis supports the activation of a cryptic splice site approximately 357-bp downstream, leading to an extended 3'-UTR with additional regulatory motifs. In conclusion, we identified two novel variants in LHFPL5, including a unique 3'-UTR splice site variant that is predicted to impact pre-mRNA splicing and regulation through an extended 3'-UTR.


Asunto(s)
Regiones no Traducidas 3' , Genes Recesivos , Enfermedades Genéticas Congénitas/genética , Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Sitios de Empalme de ARN , Femenino , Humanos , Masculino
17.
Hum Genet ; 137(6-7): 471-478, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29971487

RESUMEN

Hereditary hearing impairment is a common sensory disorder that is genetically and phenotypically heterogeneous. In this study, we used a homozygosity mapping and exome sequencing strategy to study a consanguineous Pakistani family with autosomal recessive severe-to-profound hearing impairment. This led to the identification of a missense variant (p.Ile369Thr) in the LMX1A gene affecting a conserved residue in the C-terminus of the protein, which was predicted damaging by an in silico bioinformatics analysis. The p.Ile369Thr variant disrupts several C-terminal and homeodomain residue interactions, including an interaction with homeodomain residue p.Val241 that was previously found to be involved in autosomal dominant progressive HI. LIM-homeodomain factor Lmx1a is expressed in the inner ear through development, shows a progressive restriction to non-sensory epithelia, and is important in the separation of the sensory and non-sensory domains in the inner ear. Homozygous Lmx1a mutant mice (Dreher) are deaf with dysmorphic ears with an abnormal morphogenesis and fused and misshapen sensory organs; however, computed tomography performed on a hearing-impaired family member did not reveal any cochleovestibular malformations. Our results suggest that LMX1A is involved in both human autosomal recessive and dominant sensorineural hearing impairment.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Proteínas con Homeodominio LIM/genética , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Niño , Modelos Animales de Enfermedad , Oído Interno/fisiopatología , Femenino , Genes Dominantes , Genes Recesivos , Pérdida Auditiva/fisiopatología , Pérdida Auditiva Sensorineural/fisiopatología , Homocigoto , Humanos , Proteínas con Homeodominio LIM/química , Masculino , Ratones , Mutación Missense , Linaje , Factores de Transcripción/química , Secuenciación del Exoma
18.
BMC Med Genet ; 19(1): 122, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30029624

RESUMEN

BACKGROUND: Digenic inheritance is the simplest model of oligenic disease. It can be observed when there is a strong epistatic interaction between two loci. For both syndromic and non-syndromic hearing impairment, several forms of digenic inheritance have been reported. METHODS: We performed exome sequencing in a Pakistani family with profound non-syndromic hereditary hearing impairment to identify the genetic cause of disease. RESULTS: We found that this family displays digenic inheritance for two trans heterozygous missense mutations, one in PCDH15 [p.(Arg1034His)] and another in USH1G [p.(Asp365Asn)]. Both of these genes are known to cause autosomal recessive non-syndromic hearing impairment and Usher syndrome. The protein products of PCDH15 and USH1G function together at the stereocilia tips in the hair cells and are necessary for proper mechanotransduction. Epistasis between Pcdh15 and Ush1G has been previously reported in digenic heterozygous mice. The digenic mice displayed a significant decrease in hearing compared to age-matched heterozygous animals. Until now no human examples have been reported. CONCLUSIONS: The discovery of novel digenic inheritance mechanisms in hereditary hearing impairment will aid in understanding the interaction between defective proteins and further define inner ear function and its interactome.


Asunto(s)
Cadherinas/genética , Pérdida Auditiva/genética , Proteínas del Tejido Nervioso/genética , Adulto , Animales , Proteínas Relacionadas con las Cadherinas , Heterocigoto , Humanos , Masculino , Mecanotransducción Celular/genética , Herencia Multifactorial/genética , Mutación/genética , Pakistán , Linaje , Síndromes de Usher/genética , Adulto Joven
19.
Hum Genet ; 135(5): 513-524, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27023905

RESUMEN

The high prevalence/incidence of hearing loss (HL) in humans makes it the most common sensory defect. The majority of the cases are of genetic origin. Non-syndromic hereditary HL is extremely heterogeneous. Genetic approaches have been instrumental in deciphering genes that are crucial for auditory function. In this study, we first used NADf chip to exclude the implication of known North-African mutations in HL in a large consanguineous Tunisian family (FT13) affected by autosomal recessive non-syndromic HL (ARNSHL). We then performed genome-wide linkage analysis and assigned the deafness gene locus to ch:5q23.2-31.1, corresponding to the DFNB60 ARNSHL locus. Moreover, we performed whole exome sequencing on FT13 patient DNA and uncovered amino acid substitution p.Cys113Tyr in SLC22A4, a transporter of organic cations, cosegregating with HL in FT13 and therefore the cause of ARNSHL DFNB60. We also screened a cohort of small Tunisian HL families and uncovered an additional deaf proband of consanguineous parents that is homozygous for p.Cys113Tyr carried by the same microsatellite marker haplotype as in FT13, indicating that this mutation is ancestral. Using immunofluorescence, we found that Slc22a4 is expressed in stria vascularis (SV) endothelial cells of rodent cochlea and targets their apical plasma membrane. We also found Slc22a4 transcripts in our RNA-seq library from purified primary culture of mouse SV endothelial cells. Interestingly, p.Cys113Tyr mutation affects the trafficking of the transporter and severely alters ergothioneine uptake. We conclude that SLC22A4 is an organic cation transporter of the SV endothelium that is essential for hearing, and its mutation causes DFNB60 form of HL.


Asunto(s)
Cóclea/patología , Consanguinidad , Endotelio/patología , Genes Recesivos/genética , Pérdida Auditiva/genética , Mutación/genética , Proteínas de Transporte de Catión Orgánico/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cóclea/metabolismo , Endotelio/metabolismo , Exoma/genética , Femenino , Células HEK293 , Pérdida Auditiva/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido , Simportadores
20.
Hum Mutat ; 37(5): 481-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26841241

RESUMEN

Hereditary hearing loss (HL) is characterized by both allelic and locus genetic heterogeneity. Both recessive and dominant forms of HL may be caused by different mutations in the same deafness gene. In a family with post-lingual progressive non-syndromic deafness, whole-exome sequencing of genomic DNA from five hearing-impaired relatives revealed a single variant, p.Gly488Glu (rs145970949:G>A) in MYO3A, co-segregating with HL as an autosomal dominant trait. This amino acid change, predicted to be pathogenic, alters a highly conserved residue in the motor domain of MYO3A. The mutation severely alters the ATPase activity and motility of the protein in vitro, and the mutant protein fails to accumulate in the filopodia tips in COS7 cells. However, the mutant MYO3A was able to reach the tips of organotypic inner ear culture hair cell stereocilia, raising the possibility of a local effect on positioning of the mechanoelectrical transduction (MET) complex at the stereocilia tips. To address this hypothesis, we investigated the interaction of MYO3A with the cytosolic tail of the integral tip-link protein protocadherin 15 (PCDH15), a core component of MET complex. Interestingly, we uncovered a novel interaction between MYO3A and PCDH15 shedding new light on the function of myosin IIIA at stereocilia tips.


Asunto(s)
Cadherinas/metabolismo , Sordera/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Animales , Células COS , Proteínas Relacionadas con las Cadherinas , Células Cultivadas , Niño , Preescolar , Chlorocebus aethiops , Sordera/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA