Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172088, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554975

RESUMEN

Microplastics (MPs) is the second most important environmental issue and can potentially enter into food chain through farmland contamination and other means. There are no standardized extraction methods for quantification of MPs in soil. The embedded errors and biases generated serious problems regarding the comparability of different studies and leading to erroneous estimation. To address this gap, present study was formulated to develop an efficient method for MPs analysis suitable for a wide range of soil and organic matrices. A method based on Vis-NIR (Visible-Near Infra Red) spectroscopy is developed for four different soil belonging to Alfisol, Inceptisol, Mollisol and Vertisol and two organic matter matrices (FYM and Sludge). The developed method was found as rapid, reproducible, non-destructive and accurate method for estimation of all three-density groups of MPs (Low, Medium and High) with a prediction accuracy ranging from 1.9 g MPs/kg soil (Vertisol) to 3.7 g MPs/kg soil (Alfisol). Two different regression models [Partial Least Square Regression (PLSR) and Principal Component Regression (PCR)] were assessed and PLSR was found to provide better information in terms of prediction accuracy and minimum quantification limit (MQL). However, PCR performed better for organic matter matrices than PLSR. The method avoids any complicated sample preparation steps except drying and sieving thus saving time and acquisition of reflectance spectrum for single sample is possible within 18 s. Owing to have the minimum quantification limit ranging from 1.9-3.7 g/kg soil, the vis-NIR based method is perfectly suitable for estimation of MPs in soil samples collected from plastic pollution hotspots like landfill sites, regular based sludge amended farm soils. Additionally, the method can be adapted by small scale compost industries for assessing MPs load in product like city compost which are applied at agricultural fields and will be helpful in quantifying possible MPs at the sources itself.

2.
Front Chem ; 11: 1283895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075498

RESUMEN

A robust method was developed using LC-ESI-MS/MS-based identification and quantification of 103 fortified pesticides in a mango fruit drink. Variations in QuEChERS extraction (without buffer, citrate, and/or acetate buffered) coupled with dispersive clean-up combinations were evaluated. Results showed 5 mL dilution and citrate buffered QuEChERS extraction with anhydrous (anhy) MgSO4 clean-up gave acceptable recovery for 100 pesticides @ 1 µg mL-1 fortification. The method was validated as per SANTE guidelines (SANTE/11813/2021). 95, 91, and 77 pesticides were satisfactorily recovered at 0.1, 0.05, and 0.01 µg mL-1 fortification with HorRat values ranging from 0.2-0.8 for the majority. The method showed matrix enhancement for 77 pesticides with a global uncertainty of 4.72%-23.89%. The reliability of the method was confirmed by real sample analysis of different brands of mango drinks available in the market. The greenness assessment by GAPI (Green Analytical Procedure Index) indicated the method was much greener than other contemporary methods.

3.
J Basic Microbiol ; 62(10): 1216-1228, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35522779

RESUMEN

Climate change affects nitrogen dynamics in crops and diazotrophic microorganisms with carbon dioxide (CO2 ) sequestering potential such as cyanobacteria can be promising options. The interactions of three cyanobacterial formulations (Anabaena laxa, Calothrix elenkinii and Anabaena torulosa-Bradyrhizobium japonicum biofilm) on plant and soil nitrogen in soybean, were investigated under elevated CO2 and temperature conditions. Soybean plants were grown inside Open Top Chambers under ambient and elevated (550 ± 25 ppm) CO2 concentrations and elevated temperature (+2.5-2.8°C). Interactive effect of elevated CO2 and cyanobacterial inoculation through A. laxa and Anabaena torulosa-B. japonicum biofilm led to improved growth, yield, nodulation, nitrogen fixation, and seed N in soybean crop. Nitrogenase activity in nodules increased in A. laxa and biofilm treatments, with an increase of 55% and 72%, respectively, over no cyanobacterial inoculation treatment. Although high temperature alone reduced soil microbial biomass carbon, dehydrogenase activity, and soil available N, the combined effect of CO2 and temperature were stimulatory; cyanobacterial inoculation further led to an increase under all the conditions. The highest seed N uptake (758 mg plant-1 ) was recorded with cyanobacterial biofilm inoculation under elevated CO2 with control temperature conditions. The positive interactions of elevated CO2 and cyanobacterial inoculation, particularly through A. laxa and A. torulosa-B. japonicum biofilm inoculation highlights their potential in counteracting the negative impact of changing climate along with enhancing plant and soil N in soybean.


Asunto(s)
Dióxido de Carbono , Fabaceae , Anabaena , Nitrógeno , Nitrogenasa , Oxidorreductasas , Suelo , Glycine max/microbiología , Temperatura
4.
Heliyon ; 7(1): e06049, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33537483

RESUMEN

Wilt caused by Fusarium oxysporum, sp. Ciceris (FOC) is an important disease causing losses up to 10% in chickpea yield. Experiments were conducted growing chickpea in free air ozone and carbon dioxide enrichment rings under four treatments of elevated ozone (O3) (EO:60 ± 10 ppb), elevated carbon dioxide (CO2) (ECO2:550 ± 25 ppm), combination of elevated CO2 and O3 (EO + ECO2) and ambient control for quantifying the effect on growth, yield, biochemical and nutrient content of chickpea. For studying the impact on wilt disease, chickpea was grown additionally in pots with soil containing FOC in these rings. The incidence of Fusarium wilt reduced significantly (p < 0.01) under EO as compared to ambient and ECO2. The activities of pathogenesis-related proteins chitinase and ß-1,3- glucanase, involved in plant defense mechanism were enhanced under EO. The aboveground biomass and pod weight declined by 18.7 and 15.8% respectively in uninnoculated soils under EO, whereas, in FOC inoculated soil (diseased plants), the decline under EO was much less at 8.6 and 9.9% as compared to the ambient. Under EO, the activity of super oxide dismutase increased significantly (p < 0.5, 40%) as compared to catalase (12.5%) and peroxidase (17.5%) without any significant increase under EO + ECO2. The proline accumulation was significantly (p < 0.01) higher in EO as compared to EO + ECO2, and ECO2. The seed yield declined under EO due to significant reduction (p < 0.01) in the number of unproductive pods and seed weight. No change in the protein, total soluble sugars, calcium and phosphorus content was observed in any of the treatments, however, a significant decrease in potassium (K) content was observed under EO + ECO2. Elevated CO2 (554ppm) countered the impacts of 21.1 and 14.4 ppm h (AOT 40) O3 exposure on the seed yield and nutrient content (except K) in the EO + CO2 treatment and reduced the severity of wilt disease in the two years' study.

5.
Heliyon ; 6(12): e05640, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426319

RESUMEN

The effect of duration of conservation agriculture adoption on soil carbon dynamics and system sustainability was evaluated on farms of 30 villages in the Nilokheri block of Karnal district, Haryana, India. Sustainability was evaluated, in which a number of soil physical, chemical, and biological parameters were measured and a Sustainability Index (SI) was applied. Soil samples were collected from existing conservation agriculture (CA) and conventional tillage (CT) farms. Villages under CA practices were subdivided as CA3, CA6, and CA9 based on the number of years of CA practice adoption. Results showed that bulk density (BD) of 0-15 cm soil depth was 7% greater in CA3 plots, whereas in CA6 and CA9 plots BD values were only 2% and 3% higher than CT. Soil organic carbon (SOC) in 0-15 cm soil depth was found to be greater by 16.32% in CA3 than CT plots, whereas SOC was higher by 38.77% and 61.22% in CA6 and CA9. In CA, for the 0-15 and 15-30 cm soil depths, labile pools were 36% and 22% greater than CT, respectively. For both the soil depths in CA, the recalcitrant pool was 12% and 9% more than CT, respectively. Microbial biomass carbon (MBC) values of the 0-15 cm soil depth were increased over CT by 18.57%, 47.08%, and 71.5% for CA3, CA6, and CA9 respectively. In CA plots, the SI of 0-15 cm soil depth ranged between cumulative ratings (CR) of 18-21, which indicates that CA practice is "sustainable" for both soil depths. For CT, CR ranged from 25 to 30 for both soil depths resulting in a SI of "sustainability with high input". Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) scores showed that SOC had the maximum weight (0.96) towards sustainability, giving it a rank of 1. Effective rooting depth (ERD), BD, texture, and wilting point (WP) ranked 2, 3, 4 and 5, respectively, indicating their corresponding weight of contribution towards the SI. Farmers in the Karnal district should be encouraged to adopt CA practices as they can increase SOC and move the systems from "sustainable with high input" to "sustainable".

6.
Environ Monit Assess ; 190(11): 661, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30345462

RESUMEN

To see the effect of climate change on the variation of soil hydrothermal regimes and growth of maize crop, an experiment was conducted in free-air carbon dioxide enrichment (FACE) facility during the kharif season of 2015 at Climate Change Facility of Indian Agricultural Research Institute, New Delhi, India. Under elevated CO2 and ambient condition, surface bulk density (BD) were 1.38 Mgm-3 and 1.44 Mgm-3, respectively but BD were not significantly different. During different days after sowing (DAS), in 0 to 10-cm soil depth, soil water content (SWC) in FACE varied between 14.58-20.70%, whereas in ambient condition, SWC variations were in between 19.33-22.94%. In 10 to 20-cm soil depth, SWC ranged in between 20.47-27.14% in FACE and 23.57-25.42% in ambient condition for different DAS. It is also observed that the arrival of peak surface ST was 1 h early in elevated CO2 condition. Photosynthetic rate increased by 5.7% on 44 DAS and 18.1% on 70 DAS under elevated carbon dioxide condition. Elevated carbon dioxide had reduced the stomatal conductance but the reduction was not significant. Like variation in air temperature for climate change, more intensive study is required to see the effect of climate change on soil temperature and its effect on crop growth.


Asunto(s)
Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Suelo/química , Zea mays/crecimiento & desarrollo , Agricultura , Aire/análisis , Cambio Climático , India , Fotosíntesis , Estaciones del Año , Temperatura , Agua/química
7.
Environ Monit Assess ; 190(4): 217, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29541935

RESUMEN

An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (µmol CO2 m-2 s-1) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m-2 s-1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm-3); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm-3). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.


Asunto(s)
Monitoreo del Ambiente , Suelo/química , Temperatura , Triticum/fisiología , Biomasa , Dióxido de Carbono/análisis , Grano Comestible/química , Fotosíntesis , Raíces de Plantas/química , Estaciones del Año , Triticum/crecimiento & desarrollo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...