Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Breast Cancer Res ; 24(1): 13, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164808

RESUMEN

Clinical cancer imaging focuses on tumor growth rather than metastatic phenotypes. The microtubule-depolymerizing drug, Vinorelbine, reduced the metastatic phenotypes of microtentacles, reattachment and tumor cell clustering more than tumor cell viability. Treating mice with Vinorelbine for only 24 h had no significant effect on primary tumor survival, but median metastatic tumor survival was extended from 8 to 30 weeks. Microtentacle inhibition by Vinorelbine was also detectable within 1 h, using tumor cells isolated from blood samples. As few as 11 tumor cells were sufficient to yield 90% power to detect this 1 h Vinorelbine drug response, demonstrating feasibility with the small number of tumor cells available from patient biopsies. This study establishes a proof-of-concept that targeted microtubule disruption can selectively inhibit metastasis and reveals that existing FDA-approved therapies could have anti-metastatic actions that are currently overlooked when focusing exclusively on tumor growth.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Microtúbulos , Metástasis de la Neoplasia , Vinorelbina/farmacología
2.
PLoS One ; 12(9): e0185089, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28926611

RESUMEN

Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.


Asunto(s)
Sirolimus/análogos & derivados , Sirolimus/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Empalme del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Ribosómico 28S/metabolismo , Sarcoma/metabolismo , Sarcoma/patología , Solventes/química , Solventes/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
3.
Phys Biol ; 14(2): 026005, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28092269

RESUMEN

The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems-growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Microtúbulos/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Células MCF-7 , Proteína Fluorescente Roja
4.
Oncotarget ; 8(67): 111567-111580, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29340075

RESUMEN

During metastasis, tumor cells dynamically change their cytoskeleton to traverse through a variety of non-adherent microenvironments, including the vasculature or lymphatics. Due to the challenges of imaging drift in non-adhered tumor cells, the dynamic cytoskeletal phenotypes are poorly understood. We present a new approach to analyze the dynamic cytoskeletal phenotypes of non-adhered cells that support microtentacles (McTNs), which are cell surface projections implicated in metastatic reattachment. Combining a recently-developed cell tethering method with a novel image analysis framework allowed McTN attribute extraction. Full cell outlines, number of McTNs, and distance of McTN tips from the cell body boundary were calculated by integrating a rotating anisotropic filtering method for identifying thin features with retinal segmentation and active contour algorithms. Tethered cells behave like free-floating cells; however tethering reduces cell drift and improves the accuracy of McTN measurements. Tethering cells does not significantly alter McTN number, but rather allows better visualization of existing McTNs. In drug treatment experiments, stabilizing tubulin with paclitaxel significantly increases McTN length, while destabilizing tubulin with colchicine significantly decreases McTN length. Finally, we quantify McTN dynamics by computing the time delay autocorrelations of 2 composite phenotype metrics (cumulative McTN tip distance, cell perimeter:cell body ratio). Our automated analysis demonstrates that treatment with paclitaxel increases total McTN amount and colchicine reduces total McTN amount, while paclitaxel also reduces McTN dynamics. This analysis method enables rapid quantitative measurement of tumor cell drug responses within non-adherent microenvironments, using the small numbers of tumor cells that would be available from patient samples.

5.
Oncotarget ; 7(9): 10486-97, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26871289

RESUMEN

Free-floating tumor cells located in the blood of cancer patients, known as circulating tumor cells (CTCs), have become key targets for studying metastasis. However, effective strategies to study the free-floating behavior of tumor cells in vitro have been a major barrier limiting the understanding of the functional properties of CTCs. Upon extracellular-matrix (ECM) detachment, breast tumor cells form tubulin-based protrusions known as microtentacles (McTNs) that play a role in the aggregation and re-attachment of tumor cells to increase their metastatic efficiency. In this study, we have designed a strategy to spatially immobilize ECM-detached tumor cells while maintaining their free-floating character. We use polyelectrolyte multilayers deposited on microfluidic substrates to prevent tumor cell adhesion and the addition of lipid moieties to tether tumor cells to these surfaces through interactions with the cell membranes. This coating remains optically clear, allowing capture of high-resolution images and videos of McTNs on viable free-floating cells. In addition, we show that tethering allows for the real-time analysis of McTN dynamics on individual tumor cells and in response to tubulin-targeting drugs. The ability to image detached tumor cells can vastly enhance our understanding of CTCs under conditions that better recapitulate the microenvironments they encounter during metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Adhesión Celular/fisiología , Agregación Celular/fisiología , Diagnóstico por Imagen/métodos , Células Neoplásicas Circulantes/patología , Antineoplásicos/farmacología , Línea Celular Tumoral , Extensiones de la Superficie Celular/patología , Matriz Extracelular/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos , Lípidos , Células MCF-7 , Metástasis de la Neoplasia/patología , Microambiente Tumoral/fisiología
6.
Clin Cancer Res ; 21(23): 5209-5214, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26463706

RESUMEN

The dynamic balance between microtubule extension and actin contraction regulates mammalian cell shape, division, and motility, which has made the cytoskeleton an attractive and very successful target for cancer drugs. Numerous compounds in clinical use to reduce tumor growth cause microtubule breakdown (vinca alkaloids, colchicine-site, and halichondrins) or hyperstabilization of microtubules (taxanes and epothilones). However, both of these strategies indiscriminately alter the assembly and dynamics of all microtubules, which causes significant dose-limiting toxicities on normal tissues. Emerging data are revealing that posttranslational modifications of tubulin (detyrosination, acetylation) or microtubule-associated proteins (Tau, Aurora kinase) may allow for more specific targeting of microtubule subsets, thereby avoiding the broad disruption of all microtubule polymerization. Developing approaches to reduce tumor cell migration and invasion focus on disrupting actin regulation by the kinases SRC and ROCK. Because the dynamic balance between microtubule extension and actin contraction also regulates cell fate decisions and stem cell characteristics, disrupting this cytoskeletal balance could yield unexpected effects beyond tumor growth. This review will examine recent data demonstrating that cytoskeletal cancer drugs affect wound-healing responses, microtentacle-dependent reattachment efficiency, and stem cell characteristics in ways that could affect the metastatic potential of tumor cells, both beneficially and detrimentally.


Asunto(s)
Citoesqueleto/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Citoesqueleto/química , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Investigación Biomédica Traslacional
7.
Oncotarget ; 6(34): 36292-307, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26431377

RESUMEN

The presence of tumor cells in the circulation is associated with a higher risk of metastasis in patients with breast cancer. Circulating breast tumor cells use tubulin-based structures known as microtentacles (McTNs) to re-attach to endothelial cells and arrest in distant organs. McTN formation is dependent on the opposing cytoskeletal forces of stable microtubules and the actin network. AMP-activated protein kinase (AMPK) is a cellular metabolic regulator that can alter actin and microtubule organization in epithelial cells. We report that AMPK can regulate the cytoskeleton of breast cancer cells in both attached and suspended conditions. We tested the effects of AMPK on microtubule stability and the actin-severing protein, cofilin. AMPK inhibition with compound c increased both microtubule stability and cofilin activation, which also resulted in higher McTN formation and re-attachment. Conversely, AMPK activation with A-769662 decreased microtubule stability and cofilin activation with concurrent decreases in McTN formation and cell re-attachment. This data shows for the first time that AMPK shifts the balance of cytoskeletal forces in suspended breast cancer cells, which affect their ability to form McTNs and re-attach. These results support a model where AMPK activators may be used therapeutically to reduce the metastatic efficiency of breast tumor cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama/metabolismo , Microtúbulos/metabolismo , Compuestos de Bifenilo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Citoesqueleto/enzimología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Femenino , Humanos , Células MCF-7 , Metástasis de la Neoplasia , Pirazoles/farmacología , Pirimidinas/farmacología , Pironas/farmacología , Tiofenos/farmacología
8.
Oncotarget ; 6(34): 35231-46, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26497685

RESUMEN

A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN-/-KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common.


Asunto(s)
Neoplasias de la Mama/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas ras/metabolismo , Animales , Apoptosis/fisiología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Activación Enzimática , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas ras/genética
9.
Oncotarget ; 6(8): 6251-66, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25749040

RESUMEN

The presence of circulating tumor cells (CTCs) in blood predicts poor patient outcome and CTC frequency is correlated with higher risk of metastasis. Recently discovered, novel microtubule-based structures, microtentacles, can enhance reattachment of CTCs to the vasculature. Microtentacles are highly dynamic membrane protrusions formed in detached cells and occur when physical forces generated by the outwardly expanding microtubules overcome the contractile force of the actin cortex. Rho-associated kinase (ROCK) is a major regulator of actomyosin contractility and Rho/ROCK over-activation is implicated in tumor metastasis. ROCK inhibitors are gaining popularity as potential cancer therapeutics based on their success in reducing adherent tumor cell migration and invasion. However, the effect of ROCK inhibition on detached cells in circulation is largely unknown. In this study, we use breast tumor cells in suspension to mimic detached CTCs and show that destabilizing the actin cortex through ROCK inhibition in suspended cells promotes the formation of microtentacles and enhances reattachment of cells from suspension. Conversely, increasing actomyosin contraction by Rho over-activation reduces microtentacle frequency and reattachment. Although ROCK inhibitors may be effective in reducing adherent tumor cell behavior, our results indicate that they could inadvertently increase metastatic potential of non-adherent CTCs by increasing their reattachment efficacy.


Asunto(s)
Amidas/farmacología , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/patología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Actomiosina/metabolismo , Neoplasias de la Mama/enzimología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Citoesqueleto/patología , Femenino , Humanos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Quinasas Asociadas a rho/metabolismo
10.
Cancer Discov ; 4(7): 790-803, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24786206

RESUMEN

UNLABELLED: Breast cancer mortality is principally due to tumor recurrence; however, the molecular mechanisms underlying this process are poorly understood. We now demonstrate that the suppressor of cytokine signaling protein SPSB1 is spontaneously upregulated during mammary tumor recurrence and is both necessary and sufficient to promote tumor recurrence in genetically engineered mouse models. The recurrence-promoting effects of SPSB1 result from its ability to protect cells from apoptosis induced by HER2/neu pathway inhibition or chemotherapy. This, in turn, is attributable to SPSB1 potentiation of c-MET signaling, such that preexisting SPSB1-overexpressing tumor cells are selected for following HER2/neu downregulation. Consistent with this, SPSB1 expression is positively correlated with c-MET activity in human breast cancers and with an increased risk of relapse in patients with breast cancer in a manner that is dependent upon c-MET activity. Our findings define a novel pathway that contributes to breast cancer recurrence and provide the first evidence implicating SPSB proteins in cancer. SIGNIFICANCE: The principal cause of death from breast cancer is recurrence. This study identifies SPSB1 as a critical mediator of breast cancer recurrence, suggests activation of the SPSB1-c-MET pathway as an important mechanism of therapeutic resistance in breast cancers, and emphasizes that pharmacologic targets for recurrence may be unique to this stage of tumor progression.


Asunto(s)
Neoplasias de la Mama/genética , Recurrencia Local de Neoplasia/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Experimentales , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA