Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(2): 102964, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38507415

RESUMEN

Cellular energy metabolism analysis is complex, expensive, and indirect. We present a protocol to analyze relative contribution of metabolic pathways to ATP production by directly measuring ATP levels. We describe steps for cell counting and seeding in 96-well plate, treating with metformin, and systematic inhibition with metabolic inhibitors. We then detail procedures for a viability and ATP assay and calculating energy metabolism dependency. This high-throughput and accessible protocol works with any cell line and allows for flexible perturbation studies.

2.
Cell Death Dis ; 15(3): 184, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431611

RESUMEN

Dynamin related protein 1 (DRP1), a pivotal mitochondrial fission protein, is post-translationally modified by multiple mechanisms. Here we identify a new post-translational modification of DRP1 by the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). DRP1 ISGylation is mediated by ISG15 E3 ligase, HERC5; this promotes mitochondrial fission. DeISGylation of DRP1 however leads to hyperfusion. Heterologous expression of SARS-CoV2 PLpro, a deISGylating enzyme, results in similar mitochondrial filamentation, significant decrease in total DRP1 protein levels and efflux of mtDNA. We report that deISGylated DRP1 gets ubiquitylated and degraded by TRIM25, instead of PARKIN and MITOL. While the cytosolic pool of DRP1 is primarily ISGylated, both mitochondrial and cytosolic fractions may be ubiquitylated. It is known that phosphorylation of DRP1 at S616 residue regulates its mitochondrial localisation; we show that ISGylation of phospho-DRP1 (S616) renders fission competence at mitochondria. This is significant because DRP1 ISGylation affects its functionality and mitochondrial dynamics in Alzheimer's disease pathophysiology.


Asunto(s)
Dinámicas Mitocondriales , ARN Viral , Dinámicas Mitocondriales/fisiología , Dinaminas/genética , Dinaminas/metabolismo , Procesamiento Proteico-Postraduccional , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Mitochondrion ; 74: 101825, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092249

RESUMEN

Mutations in Mitofusin2 (MFN2) associated with the pathology of the debilitating neuropathy Charcot-Marie-Tooth type 2A (CMT2A) are known to alter mitochondrial morphology. Previously, such mutations have been shown to elicit two diametrically opposite phenotypes - while some mutations have been causally linked to enhanced mitochondrial fragmentation, others have been shown to induce hyperfusion. Our study identifies one such MFN2 mutant, T206I that causes mitochondrial hyperfusion. Cells expressing this MFN2 mutant have elongated and interconnected mitochondria. T206I-MFN2 mutation in the GTPase domain increases MFN2 stability and renders cells susceptible to stress. We show that cells expressing T206I-MFN2 have a higher predisposition towards mitophagy under conditions of serum starvation. We also detect increased DRP1 recruitment onto the outer mitochondrial membrane, though the total DRP1 protein level remains unchanged. Here we have characterized a lesser studied CMT2A-linked MFN2 mutant to show that its presence affects mitochondrial morphology and homeostasis.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Mitofagia , Humanos , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Mutación , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
4.
Biol Cell ; 114(11): 309-319, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35924634

RESUMEN

BACKGROUND INFORMATION: Mitofusin2 (MFN2), an important molecular player that regulates mitochondrial fusion, also helps maintain the inter-organellar contact sites, referred as mitochondria associated membranes (MAMs) that exist between the ER and mitochondria. The study deals with a mutant of MFN2, R364W-MFN2, linked with the neuropathy, Charcot Marie Tooth (CMT) disease. Previous studies show that this mutant promotes mitochondrial hyperfusion. Here, we try to decipher the role of R364W-MFN2 in affecting the ER mitochondrial associations at the MAM junctions and inter-organellar calcium signalling between the ER and the mitochondria. RESULTS: Our results show that R364W-MFN2 altered ER-mitochondria association at the MAM junctions, predisposed mitochondria towards cellular stress with the mitochondria undergoing rapid fission upon induction of mild stress and perturbs inter-organellar calcium homeostasis. CONCLUSION: The results indicate that R364W-MFN2 not only affects mitochondrial morphology and dynamics but also modulate its interaction with the ER and Ca2+ signalling between the two organelles. SIGNIFICANCE: This study provides significant insight that presence of the R364W-MFN2 mutation makes cells susceptible towards stress, thus negatively affecting cellular health which altogether might culminate in the form of the CMT neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Dinámicas Mitocondriales , Humanos , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Calcio , Mitocondrias/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Homeostasis
5.
Front Cell Dev Biol ; 10: 929708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903542

RESUMEN

Inflammation is a defining factor in disease progression; epigenetic modifications of this first line of defence pathway can affect many physiological and pathological conditions, like aging and tumorigenesis. Inflammageing, one of the hallmarks of aging, represents a chronic, low key but a persistent inflammatory state. Oxidative stress, alterations in mitochondrial DNA (mtDNA) copy number and mis-localized extra-mitochondrial mtDNA are suggested to directly induce various immune response pathways. This could ultimately perturb cellular homeostasis and lead to pathological consequences. Epigenetic remodelling of mtDNA by DNA methylation, post-translational modifications of mtDNA binding proteins and regulation of mitochondrial gene expression by nuclear DNA or mtDNA encoded non-coding RNAs, are suggested to directly correlate with the onset and progression of various types of cancer. Mitochondria are also capable of regulating immune response to various infections and tissue damage by producing pro- or anti-inflammatory signals. This occurs by altering the levels of mitochondrial metabolites and reactive oxygen species (ROS) levels. Since mitochondria are known as the guardians of the inflammatory response, it is plausible that mitochondrial epigenetics might play a pivotal role in inflammation. Hence, this review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.

6.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119210, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032474

RESUMEN

The endoplasmic reticulum (ER) is a membranous organelle involved in calcium storage, lipid biosynthesis, protein folding and processing. Many patho-physiological conditions and pharmacological agents are known to perturb normal ER function and can lead to ER stress, which severely compromise protein folding mechanism and hence poses high risk of proteotoxicity. Upon sensing ER stress, the different stress signaling pathways interconnect with each other and work together to preserve cellular homeostasis. ER stress response is a part of the integrative stress response (ISR) and might play an important role in the pathogenesis of chronic neurodegenerative diseases, where misfolded protein accumulation and cell death are common. The initiation, manifestation and progression of ER stress mediated unfolded protein response (UPR) is a complex procedure involving multiple proteins, pathways and cellular organelles. To understand the cause and consequences of such complex processes, implementation of an integrative holistic approach is required to identify novel players and regulators of ER stress. As multi-omics data-based systems analyses have shown potential to unravel the underneath molecular mechanism of complex biological systems, it is important to emphasize the utility of this approach in understanding the ER stress biology. In this review we first discuss the ER stress signaling pathways and regulatory players, along with their inter-connectivity. We next highlight the importance of systems and network biology approaches using multi-omics data in understanding ER stress mediated cellular responses. This report would help advance our current understanding of the multivariate spatial interconnectivity and temporal dynamicity of ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Biología de Sistemas/métodos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Redes Reguladoras de Genes/genética , Humanos , Mapas de Interacción de Proteínas/genética , ARN no Traducido/metabolismo , Transducción de Señal/genética , Respuesta de Proteína Desplegada
7.
Int J Cancer ; 150(4): 551-561, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460104

RESUMEN

Stress granules (SGs) contain mRNAs and proteins stalled in translation during stress; these are increasingly being implicated in diseases, including neurological disorders and cancer. The dysregulated assembly, persistence, disassembly and clearance of SGs contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, SGs have only recently been implicated in its pathogenesis. Senescence has long been established to play an antitumorigenic role, however, relatively less studied is its protumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review, we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilized for therapeutic intervention.


Asunto(s)
Neoplasias Encefálicas/etiología , Senescencia Celular/fisiología , Glioma/etiología , Gránulos de Estrés/fisiología , Autofagia , Neoplasias Encefálicas/patología , ADN Helicasas/fisiología , Progresión de la Enfermedad , Glioma/patología , Humanos , Microtúbulos/química , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , ARN Helicasas/fisiología , Proteínas con Motivos de Reconocimiento de ARN/fisiología , Telómero , Quinasas Asociadas a rho/fisiología
8.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34870686

RESUMEN

Mutations in mitofusin 2 (MFN2) that are associated with the pathology of the debilitating neuropathy Charcot-Marie-Tooth type 2A (CMT2A) are known to alter mitochondrial morphology. One such abundant MFN2 mutation, R364W, results in the generation of elongated, interconnected mitochondria. However, the mechanism leading to this mitochondrial aberration remains poorly understood. Here, we show that mitochondrial hyperfusion in the presence of R364W-MFN2 is due to increased degradation of DRP1 (also known as DNM1L). The E3 ubiquitin ligase MITOL (also known as MARCHF5) is known to ubiquitylate both MFN2 and DRP1. Interaction with and subsequent ubiquitylation by MITOL is stronger in the presence of wild-type MFN2 than with R364W-MFN2. This differential interaction of MITOL with MFN2 in the presence of R364W-MFN2 renders the ligase more available for DRP1 ubiquitylation. Multi-monoubiquitylation and proteasomal degradation of DRP1 in R364W-MFN2 cells in the presence of MITOL eventually leads to mitochondrial hyperfusion. Here, we provide a mechanistic insight into mitochondrial hyperfusion, while also reporting that MFN2 can indirectly modulate DRP1 - an effect not shown previously. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Dinámicas Mitocondriales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación/genética , Ubiquitinación
9.
Biol Cell ; 113(9): 375-400, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33870508

RESUMEN

Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Compartimento Celular/fisiología , Mitocondrias/metabolismo , Mitocondrias/patología , Membranas Mitocondriales/metabolismo , Péptido Hidrolasas/metabolismo , Transporte de Proteínas/fisiología , Proteolisis , Control de Calidad
10.
Autophagy ; 17(7): 1729-1752, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32559118

RESUMEN

Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.


Asunto(s)
Autofagosomas/metabolismo , GTP Fosfohidrolasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Biochem Soc Trans ; 48(6): 2823-2838, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33155647

RESUMEN

Mitochondrial DNA (mtDNA) can initiate an innate immune response when mislocalized in a compartment other than the mitochondrial matrix. mtDNA plays significant roles in regulating mitochondrial dynamics as well as mitochondrial unfolded protein response (UPR). The mislocalized extra-mtDNA can elicit innate immune response via cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway, inducing the expression of the interferon-stimulated genes (ISGs). Also, cytosolic damaged mtDNA is cleared up by various pathways which are responsible for participating in the activation of inflammatory responses. Four pathways of extra-mitochondrial mtDNA clearance are highlighted in this review - the inflammasome activation mechanism, neutrophil extracellular traps formation, recognition by Toll-like receptor 9 and transfer of mtDNA between cells packaged into extracellular vesicles. Anomalies in these pathways are associated with various diseases. We posit our review in the present pandemic situation and discuss how mtDNA elicits innate immune responses against different viruses and bacteria. This review gives a comprehensive picture of the role of extra-mitochondrial mtDNA in infectious diseases and speculates that research towards its understanding would help establish its therapeutic potential.


Asunto(s)
Enfermedades Transmisibles/inmunología , ADN Mitocondrial/metabolismo , Inmunidad Innata , Respuesta de Proteína Desplegada , Animales , Humanos , Inflamación , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología
13.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118741, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32422153

RESUMEN

Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.


Asunto(s)
Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Mutación con Pérdida de Función/genética , Factores de Transcripción/genética , Biomarcadores , Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Lisosomas/metabolismo , Transporte de Proteínas , Factores de Transcripción/metabolismo
14.
Biochem Soc Trans ; 48(2): 631-644, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32219382

RESUMEN

The cellular mitochondrial population undergoes repeated cycles of fission and fusion to maintain its integrity, as well as overall cellular homeostasis. While equilibrium usually exists between the fission-fusion dynamics, their rates are influenced by organellar and cellular metabolic and pathogenic conditions. Under conditions of cellular stress, there is a disruption of this fission and fusion balance and mitochondria undergo either increased fusion, forming a hyperfused meshwork or excessive fission to counteract stress and remove damaged mitochondria via mitophagy. While some previous reports suggest that hyperfusion is initiated to ameliorate cellular stress, recent studies show its negative impact on cellular health in disease conditions. The exact mechanism of mitochondrial hyperfusion and its role in maintaining cellular health and homeostasis, however, remain unclear. In this review, we aim to highlight the different aspects of mitochondrial hyperfusion in either promoting or mitigating stress and also its role in immunity and diseases.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia , Animales , Apoptosis , Autofagia , Ciclo Celular , Senescencia Celular , Retículo Endoplásmico/metabolismo , Humanos , Inmunidad Innata , Ratones , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Mutación , Oxígeno/metabolismo , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
15.
Traffic ; 20(12): 943-960, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31472037

RESUMEN

Presence of cytosolic protein aggregates and membrane damage are two common attributes of neurodegenerative diseases. These aggregates delay degradation of non-translocated protein precursors leading to their persistence and accumulation in the cytosol. Here, we find that cells with intracellular protein aggregates (of cytosolic prion protein or huntingtin) destabilize the endoplasmic reticulum (ER) morphology and dynamics when non-translocated protein load is high. This affects trafficking of proteins out from the ER, relative distribution of the rough and smooth ER and three-way junctions that are essential for the structural integrity of the membrane network. The changes in ER membranes may be due to high aggregation tendency of the ER structural proteins-reticulons, and altered distribution of those associated with the three-way ER junctions-Lunapark. Reticulon4 is seen to be enriched in the aggregate fractions in presence of non-translocated protein precursors. This could be mitigated by improving signal sequence efficiencies of the proteins targeted to the ER. These were observed using PrP variants and the seven-pass transmembrane protein (CRFR1) with different signal sequences that led to diverse translocation efficiencies. This identifies a previously unappreciated consequence of cytosolic aggregates on non-translocated precursor proteins-their persistent presence affects ER morphology and dynamics. This may be one of the ways in which cytosolic aggregates can affect endomembranes during neurodegenerative disease.


Asunto(s)
Retículo Endoplásmico/metabolismo , Agregado de Proteínas , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Nogo/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Unión Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Receptores de Hormona Liberadora de Corticotropina/química , Receptores de Hormona Liberadora de Corticotropina/metabolismo
16.
FASEB J ; 33(2): 1927-1945, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30230921

RESUMEN

The mechanism by which the endoplasmic reticulum (ER) ubiquitin ligases sense stress to potentiate their activity is poorly understood. GP78, an ER E3 ligase, is best known for its role in ER-associated protein degradation, although its activity is also linked to mitophagy, ER-mitochondria junctions, and MAPK signaling, thus highlighting the importance of understanding its regulation. In healthy cells, Mahogunin really interesting new gene (RING) finger 1 (MGRN1) interacts with GP78 and proteasomally degrades it to alleviate mitophagy. Here, we identify calmodulin (CaM) as the adapter protein that senses fluctuating cytosolic Ca2+ levels and modulates the Ca2+-dependent MGRN1-GP78 interactions. When stress elevates cytosolic Ca2+ levels in cultured and primary neuronal cells, CaM binds to both E3 ligases and inhibits their interaction. Molecular docking, simulation, and biophysical studies show that CaM interacts with both proteins with different affinities and binding modes. The physiological impact of this interaction switch manifests in the regulation of ER-associated protein degradation, ER-mitochondria junctions, and relative distribution of smooth ER and rough ER.-Mukherjee, R., Bhattacharya, A., Sau, A., Basu, S., Chakrabarti, S., Chakrabarti, O. Calmodulin regulates MGRN1-GP78 interaction mediated ubiquitin proteasomal degradation system.


Asunto(s)
Calmodulina/metabolismo , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores del Factor Autocrino de Motilidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Señalización del Calcio , Calmodulina/química , Calmodulina/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Ratones , Simulación del Acoplamiento Molecular , Neuronas/citología , Complejo de la Endopetidasa Proteasomal/genética , Receptores del Factor Autocrino de Motilidad/química , Receptores del Factor Autocrino de Motilidad/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
17.
Traffic ; 19(7): 485-495, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29577527

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long-lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo-lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo-lysosomal degradative pathway-loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis , Animales , Apoptosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Enfermedades Neurodegenerativas/genética
18.
Mol Neurobiol ; 55(3): 2631-2644, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28421536

RESUMEN

Prion diseases are transmissible, familial or sporadic. The prion protein (PrP), a normal cell surface glycoprotein, is ubiquitously expressed throughout the body. While loss of function of PrP does not elicit apparent phenotypes, generation of misfolded forms of the protein or its aberrant metabolic isoforms has been implicated in a number of neurodegenerative disorders such as scrapie, kuru, Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker and bovine spongiform encephalopathy. These diseases are all phenotypically characterised by spongiform vacuolation of the adult brain, hence collectively termed as late-onset spongiform neurodegeneration. Misfolded form of PrP (PrPSc) and one of its abnormal metabolic isoforms (the transmembrane CtmPrP) are known to be disease-causing agents that lead to progressive loss of structure or function of neurons culminating in neuronal death. The aberrant forms of PrP utilise and manipulate the various intracellular quality control mechanisms during pathogenesis of these diseases. Amongst these, the lysosomal quality control machinery emerges as one of the primary targets exploited by the disease-causing isoforms of PrP. The autophagosomal-lysosomal degradation pathway is adversely affected in multiple ways in prion diseases and may hence be regarded as an important modulator of neurodegeneration. Some of the ESCRT pathway proteins have also been shown to be involved in the manifestation of disease phenotype. This review discusses the significance of the lysosomal quality control pathway in affecting transmissible and familial types of prion diseases.


Asunto(s)
Lisosomas/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Lisosomas/genética , Lisosomas/patología , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Priones/genética , Control de Calidad , Transducción de Señal/fisiología
19.
Traffic ; 18(12): 791-807, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28902452

RESUMEN

MGRN1-mediated ubiquitination of α-tubulin regulates microtubule stability and mitotic spindle positioning in mitotic cells. This study elucidates the effect of MGRN1-mediated ubiquitination of α-tubulin in interphase cells. Here, we show that MGRN1-mediated ubiquitination regulates dynamics of EB1-labeled plus ends of microtubules. Intracellular transport of mitochondria and endosomes are affected in cultured cells where functional MGRN1 is depleted. Defects in microtubule-dependent organellar transport are evident in cells where noncanonical K6-mediated ubiquitination of α-tubulin by MGRN1 is compromised. Loss of MGRN1 has been previously correlated with late-onset spongiform neurodegeneration. Mislocalised cytosolically exposed PrP (Ctm PrP) interacts with MGRN1 leading to its loss of function. Expression of Ctm PrP generating mutants of PrP[PrP(A117V) and PrP(KHII)] lead to decrease in MGRN1-mediated ubiquitination of α-tubulin and intracellular transport defects. Brain lysates from PrP(A117V) transgenic mice also indicate loss of tubulin polymerization as compared to non-transgenic controls. Depletion of MGRN1 activity may hamper physiologically important processes like mitochondrial movement in neuronal processes and intracellular transport of ligands through the endosomal pathway thereby contributing to the pathogenesis of neurodegeneration in certain types of prion diseases.


Asunto(s)
Transporte Biológico/fisiología , Tubulina (Proteína)/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Mol Biol Cell ; 28(15): 2106-2122, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28539405

RESUMEN

ESCRT proteins are implicated in myriad cellular processes, including endosome formation, fusion of autophagosomes/amphisomes with lysosomes, and apoptosis. The role played by these proteins in either facilitating or protecting against apoptosis is unclear. In this study, while trying to understand how deficiency of Mahogunin RING finger 1 (MGRN1) affects cell viability, we uncovered a novel role for its interactor, the ESCRT-I protein TSG101: it directly participates in mitigating ER stress-mediated apoptosis. The association of TSG101 with ALIX prevents predisposition to apoptosis, whereas ALIX-ALG-2 interaction favors a death phenotype. Altered Ca2+ homeostasis in cells and a simultaneous increase in the protein levels of ALIX and ALG-2 are required to elicit apoptosis by activating ER stress-associated caspase 4/12. We further demonstrate that in the presence of membrane-associated, disease-causing prion protein CtmPrP, increased ALIX and ALG-2 levels are detected along with ER stress markers and associated caspases in transgenic brain lysates and cells. These effects were rescued by overexpression of TSG101. This is significant because MGRN1 deficiency is closely associated with neurodegeneration and prenatal and neonatal mortality, which could be due to excess cell death in selected brain regions or myocardial apoptosis during embryonic development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasas/metabolismo , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/fisiología , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...