Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurosci Biobehav Rev ; 165: 105834, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084583

RESUMEN

Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.


Asunto(s)
Encéfalo , Microglía , Plasticidad Neuronal , Caracteres Sexuales , Transducción de Señal , Humanos , Microglía/metabolismo , Microglía/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Animales , Transducción de Señal/fisiología , Femenino , Masculino , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética
2.
Microbiologyopen ; 10(4): e1188, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459544

RESUMEN

The enormous complexity of the eukaryotic ribosome has been a real challenge in unlocking the mechanistic aspects of its amazing molecular function during mRNA translation and many non-canonical activities of ribosomal proteins in eukaryotic cells. While exploring the uncanny nature of ribosomal P proteins in malaria parasites Plasmodium falciparum, the 60S stalk ribosomal P2 protein has been shown to get exported to the infected erythrocyte (IE) surface as an SDS-resistant oligomer during the early to the mid-trophozoite stage. Inhibiting IE surface P2 either by monoclonal antibody or through genetic knockdown resulted in nuclear division arrest of the parasite. This strange and serendipitous finding has led us to explore more about un-canonical cell biology and the structural involvement of P2 protein in Plasmodium in the search for a novel biochemical role during parasite propagation in the human host.


Asunto(s)
División Celular/fisiología , Eritrocitos/parasitología , Fosfoproteínas/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Humanos , Malaria Falciparum/patología , Proteínas de la Membrana/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Plasmodium falciparum/genética , Transporte de Proteínas/fisiología , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA