Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(18): 4440-4447, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38686937

RESUMEN

We utilized linear and 2D infrared spectroscopy to analyze the carbonyl stretching modes of small esters in different solvents. Particularly noteworthy were the distinct carbonyl spectral line shapes in aqueous solutions, prompting our investigation of the underlying factors responsible for these differences. Through our experimental and theoretical calculations, we identified the presence of the hydrogen-bond-induced Fermi resonance as the primary contributor to the varied line shapes of small esters in aqueous solutions. Furthermore, our findings revealed that the skeletal deformation mode plays a crucial role in the Fermi resonance for all small esters. Specifically, the first overtone band of the skeletal deformation mode intensifies when hydrogen bonds form with the carbonyl group of esters, whereas such coupling is rare in aprotic organic solvents. These spectral insights carry significant implications for the utilization of esters as infrared probes in both biological and chemical systems.

2.
RSC Adv ; 13(2): 1295-1300, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686902

RESUMEN

Using infrared spectroscopy and density functional theory (DFT) calculations, we scrutinized an amide (dimethylformamide) as a "model" compound to interpret the interactions of amide 1 with different phenol derivatives (para-chlorophenol (PCP) and para-cresol (CP)) as "model guest molecules". We established the involvement of amide I in vibrational coupling with symmetric and asymmetric C[double bond, length as m-dash]C modes of different phenolic derivatives and how their coupling was dependent upon different guest aromatic phenolic compounds. Interestingly, substitution of phenol perturbed the pattern of vibrational coupling with amide I. The symmetric and asymmetric C[double bond, length as m-dash]C modes of PC were coupled significantly with amide 1. For PCP, the symmetric C[double bond, length as m-dash]C mode coupled significantly, but the asymmetric mode coupled negligibly, with amide I. Here, we reveal the nature of vibrational coupling based on the structure of a guest molecule hydrogen-bonded with amide I. Our conclusions could be valuable for depiction of the unusual dynamics of coupled amide-I modes as well as the dependency of vibrational coupling on altered factors.

3.
J Phys Chem B ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852454

RESUMEN

Solvatochromic shifts of S═O vibrational probes describe the strength of the surrounding electric fields and the hydrogen bonding status. Herein, we demonstrated how the solvents alter the infrared (IR) spectra of the S═O vibrating mode. The experimental measurement of the involvement of α-H/D isotopic interactions with different solvents and their effects on the IR absorbance spectra of the vibrational probe provides detailed knowledge of the microsolvation environment despite the complexity of overlapping bands in the spectra. Herein, we discover how the solvents interact differently with DMSO and DMSO-d6, while being electronically and structurally the same. Interestingly, the IR spectrum of the S═O mode remains unaltered during α-isotopic replacement in the presence of aprotic solvents (acetone, acetonitrile, and dichloromethane), but in strongly coordinating polar solvents (D2O), it is altered remarkably. There is a lack of quantitative information about the influence of the α-H atom or α-isotopic substitution on the vibrational probe in the literature. Our experiments provide a detailed molecular understanding of the structure of DMSO in DMSO-solvent binary mixtures. As DMSO plays an important role in virtually all subdisciplines of chemistry and biology, we believe that our work will be of interest to a large diversity of studies in these fields.

4.
J Phys Chem B ; 126(24): 4501-4508, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35674725

RESUMEN

Dimethyl sulfoxide (DMSO), a polar solvent molecule, is used in a wide range of therapeutic and pharmacological applications. Different intermolecular interactions, such as dimerization and hydrogen bonding with water, are crucial to understanding the role of DMSO in applications. Herein, we study DMSO in various solvation environments to decipher the environment-dependent dimerization and hydrogen-bonding propensity. We use a combination of infrared spectroscopy, quantum mechanical calculations, and molecular dynamics simulations to reach our conclusions. Although DMSO can exist in a dynamic equilibrium between monomers and dimers, our results show that the relative intensity of the S═O stretch and the CH3 rocking modes is a spectroscopic indicator of the extent of DMSO dimerization in solution. The dimerization (self-association) is seen to be maximum in neat DMSO. When dissolved in different solvents, the dimerization propensity decreases with increasing solvent polarity. In the presence of a protic solvent, such as water, DMSO forms a hydrogen bond with the solvent molecules, thereby reducing the extent of dimerization. Further, we estimate the hydrogen-bond occupancy of DMSO. Our results show that DMSO predominantly exists as doubly hydrogen-bonded in water.


Asunto(s)
Dimetilsulfóxido , Agua , Dimetilsulfóxido/química , Hidrógeno , Enlace de Hidrógeno , Solventes/química , Agua/química
5.
Langmuir ; 36(38): 11255-11261, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32880182

RESUMEN

Despite the key roles of l-glutathiones (GSHs) inbiology and nano-biotechnology, understanding their labile structures and hydrogen bond interactions with nanoparticles has posed a critical challenge to the scientific community. The structural conformation of GSH as a capping layer on gold nanoparticle (AuNP) and silver nanoparticle (AgNP) surfaces is investigated. In this report, we attempt to explore the material-dependent interaction of GSH with different spherical nanoparticle surfaces by employing Fourier transform infrared (FTIR) spectroscopy. The infrared signal of amide I of GSH is studied as a function of different materials' spherical nanoparticles with comparable size. We revealed the ß-sheet secondary structure of GSH on AgNPs and the random structure on AuNPs even though both the nanoparticles have comparable shapes and sizes and belong to the same group of the periodic table. The GSH is firmly anchored on the gold and silver surface via the thiol of the cys part. However, our experimental data designate a further interaction with the AgNP surface via the carboxylic acid group of the gly- and glu- end of the molecule. It is observed that enhancement of IR absorption of amide I of GSH is pronounced by a factor of 10 on AuNP but, in contrast, on the same-sized AgNP, the suppression is perceived by a factor of 2, even though both are plasmonic materials with respect to free GSH. This study can be used as a point of reference for understanding the structural conformation of the capping layer on nanoparticle surfaces as well as surface enhancement of the IR absorption of amide I. We would like to emphasize that molecular self-assembly on the nanoparticle surfaces is definitely of very broad interest for chemists working in nearly any subdiscipline, spanning from the nanoparticle-based medicine to surface-enhanced spectroscopy to heterogeneous catalysis, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...