Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38949882

RESUMEN

Oral Squamous cell carcinoma (OSCC) is the 14th most frequent cancer with 300,000 new cases and 100,000 deaths reported annually. Even with advanced therapy, the treatment outcomes are poor at advanced stages of the disease. The diagnosis of early OSCC is of paramount clinical value given the high mortality rate associated with the late stages of the disease. Recently, the role of microbiome in the disease manifestation, including oral cancer, has garnered considerable attention. But, to establish the role of bacteria in oral cancer, it is important to determine the differences in the colonization pattern in non-tumour and tumour tissues. In this study, 16S rRNA based metagenomic analyses of 13 tumorous and contralateral anatomically matched normal tissue biopsies, obtained from patients with advanced stage of OSCC were evaluated to understand the correlation between OSCC and oral microbiome. In this study we identified Fusobacterium, Prevotella, Capnocytophaga, Leptotrichia, Peptostreptococcus, Parvimonas and Bacteroidetes as the most significantly enriched taxa in OSCC lesions compared to the non-cancerous tissues. Further, PICRUSt2 analysis unveiled enhanced expression of metabolic pathways associated with L-lysine fermentation, pyruvate fermentation, and isoleucine biosynthesis in those microbes associated with OSCC tissues. These findings provide valuable insights into the distinctive microbial signatures associated with OSCC, offering potential biomarkers and metabolic pathways underlying OSCC pathogenesis. While our focus has primarily centred on microbial signatures, it is essential to recognize the pivotal role of host factors such as immune responses, genetic predisposition, and the oral microenvironment in shaping OSCC development and microbiome composition.

2.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910219

RESUMEN

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Asunto(s)
Aeromonas hydrophila , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Nanopartículas , Proteínas Recombinantes , Pez Cebra , Animales , Pez Cebra/inmunología , Aeromonas hydrophila/inmunología , Aeromonas hydrophila/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Administración Oral , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vacunación , Nanovacunas
3.
Mol Cancer Ther ; : OF1-OF10, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853444

RESUMEN

Mesothelin (MSLN) is a cell-surface protein that is expressed in many cancers, which makes it a popular target for Ab-based cancer therapy. However, MSLN is shed from cancer cells at high levels via proteases that cleave at its membrane-proximal C-terminal region. Shed MSLN accumulates in patients' fluids and tumors and can block Ab-based MSLN-targeting drugs from killing cancer cells. A previously established mAb, 15B6, binds MSLN at its protease-sensitive C-terminal region and does not bind shed MSLN. Moreover, 15B6 variable fragment (Fv)-derived chimeric antigen receptor T cells are not inhibited by shed MSLN and kill tumors in mice more effectively than mAb SS1 Fv-derived chimeric antigen receptor T cells, which bind an epitope retained in shed MSLN. In this study, we have established 15B6 Fv-derived MSLN × CD3 bispecific antibodies (BsAb) that target MSLN-expressing cancers. We identified our lead candidate BsAb 5 after screening multiple 15B6-derived BsAb formats in vitro for cytotoxic activity. BsAb 5 activates T cells to kill various cancer cell lines in a MSLN-specific manner. MSLN 296-591 His, a recombinant protein mimicking shed MSLN, does not inhibit 15B6-derived BsAb 5 but completely inhibits humanized SS1-derived BsAb 7. Furthermore, BsAb 5 inhibits and delays tumor growth and is not inhibited by MSLN 296-585 His in mice. Our findings indicate that by targeting the protease-sensitive region of MSLN, BsAb 5 has high MSLN-specific anticancer activity that is not inhibited by shed MSLN. BsAb 5 may be a promising immunotherapy candidate for MSLN-expressing cancers.

4.
J Microencapsul ; 41(5): 390-401, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945157

RESUMEN

Green-synthesis of biodegradable polymeric curcumin-nanoparticles using affordable biodegradable polymers to enhance curcumin's solubility and anti-oxidative potential. The curcumin-nanoparticle was prepared based on the ionic-interaction method without using any chemical surfactants, and the particle-size, zeta-potential, surface-morphology, entrapmentefficiency, and in-vitro drug release study were used to optimise the formulation. The antioxidant activity was investigated using H2DCFDA staining in the zebrafish (Danio rerio) model. The mean-diameter of blank nanoparticles was 178.2 nm (±4.69), and that of curcuminnanoparticles was about 227.7 nm (±10.4), with a PDI value of 0.312 (±0.023) and 0.360 (±0.02). The encapsulation-efficacy was found to be 34% (±1.8), with significantly reduced oxidative-stress and toxicity (∼5 times) in the zebrafish model compared to standard curcumin. The results suggested that the current way of encapsulating curcumin using affordable, biodegradable, natural polymers could be a better approach to enhancing curcumin's water solubility and bioactivity, which could further be translated into potential therapeutics.


Asunto(s)
Antioxidantes , Quitosano , Curcumina , Tecnología Química Verde , Goma Arábiga , Nanopartículas , Pez Cebra , Animales , Curcumina/farmacología , Curcumina/química , Curcumina/administración & dosificación , Curcumina/farmacocinética , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Quitosano/química , Goma Arábiga/química , Portadores de Fármacos/química , Liberación de Fármacos , Solubilidad , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula
5.
New Phytol ; 242(6): 2652-2668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649769

RESUMEN

Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.


Asunto(s)
Cicer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Almacenamiento de Semillas , Semillas , Factores de Transcripción , Cicer/genética , Cicer/metabolismo , Cicer/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Semillas/metabolismo , Semillas/genética , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Secuencia de Bases , Activación Transcripcional/genética , Plantas Modificadas Genéticamente
6.
Mol Cancer Ther ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647528

RESUMEN

Mesothelin (MSLN) is a cell-surface protein that is expressed on many cancers, which makes it a popular target for antibody-based cancer therapy. However, MSLN is shed from cancer cells at high levels via proteases that cleave at its membrane-proximal C-terminal region. Shed MSLN accumulates in patient fluids and tumors and can block antibody-based MSLN-targeting drugs from killing cancer cells. A previously established monoclonal antibody (mAb), 15B6, binds MSLN at its protease-sensitive C-terminal region and does not bind shed MSLN. 15B6 variable fragment (Fv)-derived chimeric antigen receptor (CAR) T cells are not inhibited by shed MSLN and kill tumors in mice more effectively than mAb SS1 Fv-derived CAR T cells, which bind an epitope retained in shed MSLN. Here, we have established 15B6 Fv-derived MSLN x CD3 bispecific antibodies (BsAbs) that target MSLN-expressing cancers. We identified our lead candidate, BsAb 5, after screening multiple 15B6-derived BsAb formats in vitro for cytotoxic activity. BsAb 5 activates T cells to kill various cancer cell lines in a MSLN-specific manner. MSLN 296-591 His, a recombinant protein mimicking shed MSLN, does not inhibit 15B6-derived BsAb 5 but completely inhibits humanized SS1-derived BsAb 7. Furthermore, BsAb 5 inhibits and delays tumor growth and is not inhibited by MSLN 296-585 His in mice. Our findings indicate that by targeting the protease-sensitive region of MSLN, BsAb 5 has high MSLN-specific anticancer activity that is not inhibited by shed MSLN. BsAb 5 may be a promising immunotherapy candidate for MSLN-expressing cancers.

7.
Mol Biotechnol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512427

RESUMEN

Aquaculture production has been incurring economic losses due to infectious diseases by opportunistic pathogens like Aeromonas hydrophila, a bacterial agent that commonly affects warm water aquacultured fish. Developing an effective vaccine with an appropriate delivery system can elicit an immune response that would be a useful disease management strategy through prevention. The most practical method of administration would be the oral delivery of vaccine developed through nano-biotechnology. In this study, the gene encoding an outer membrane protein, maltoporin, of A. hydrophila, was identified, sequenced, and studied using bioinformatics tools to examine its potential as a vaccine candidate. Using a double emulsion method, the molecule was cloned, over-expressed, and encapsulated in a biodegradable polymer polylactic-co-glycolic acid (PLGA). The immunogenicity of maltoporin was identified through in silico analysis and thus taken up for nanovaccine preparation. The encapsulation efficiency of maltoporin was 63%, with an in vitro release of 55% protein in 48 h. The particle size and morphology of the encapsulated protein exhibited properties that could induce stability and function as an effective carrier system to deliver the antigen to the site and trigger immune response. Results show promise that the PLGA-mediated delivery system could be a potential carrier in developing a fish vaccine via oral administration. They provide insight for developing nanovaccine, since sustained in vitro release and biocompatibility were observed. There is further scope to study the immune response and examine the protective immunity induced by the nanoparticle-encapsulated maltoporin by oral delivery to fish.

8.
ACS Nano ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315563

RESUMEN

The family of two-dimensional (2D) van der Waals (vdW) materials provides a playground for tuning structural and magnetic interactions to create a wide variety of spin textures. Of particular interest is the ferromagnetic compound Fe5GeTe2 that we show displays a range of complex spin textures as well as complex crystal structures. Here, using a high-brailliance laboratory X-ray source, we show that the majority (1 × 1) Fe5GeTe2 (FGT5) phase exhibits a structure that was previously considered as being centrosymmetric but rather lacks inversion symmetry. In addition, FGT5 exhibits a minority phase that exhibits a long-range ordered (√3 × âˆš3)-R30° superstructure. This superstructure is highly interesting in that it is innately 2D without any lattice periodicity perpendicular to the vdW layers, and furthermore, the superstructure is a result of ordered Te vacancies in one of the topmost layers of the FGT5 sheets rather than being a result of vertical Fe ordering as earlier suggested. We show, from direct real-space magnetic imaging, evidence for three distinct magnetic ground states in lamellae of FGT5 that are stabilized with increasing lamella thickness, namely, a multidomain state, a stripe phase, and an unusual fractal state. In the stripe phase we also observe unconventional type-I and type-II bubbles where the spin texture in the central region of the bubbles is nonuniform, unlike conventional bubbles. In addition, we find a bobber or a cocoon-like spin texture in thick (∼170 µm) FGT5 that emerges from the fractal state in the presence of a magnetic field. Among all the 2D vdW magnets we have thus demonstrated that FGT5 hosts perhaps the richest variety of magnetic phases that, thereby, make it a highly interesting platform for the subtle tuning of magnetic interactions.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38329857

RESUMEN

The high cost of acquiring and annotating samples has made the "few-shot" learning problem of prime importance. Existing works mainly focus on improving performance on clean data and overlook robustness concerns on the data perturbed with adversarial noise. Recently, a few efforts have been made to combine the few-shot problem with the robustness objective using sophisticated meta-learning techniques. These methods rely on the generation of adversarial samples in every episode of training, which further adds to the computational burden. To avoid such time-consuming and complicated procedures, we propose a simple but effective alternative that does not require any adversarial samples. Inspired by the cognitive decision-making process in humans, we enforce high-level feature matching between the base class data and their corresponding low-frequency samples in the pretraining stage via self distillation. The model is then fine-tuned on the samples of novel classes where we additionally improve the discriminability of low-frequency query set features via cosine similarity. On a one-shot setting of the CIFAR-FS dataset, our method yields a massive improvement of 60.55% and 62.05% in adversarial accuracy on the projected gradient descent (PGD) and state-of-the-art auto attack, respectively, with a minor drop in clean accuracy compared to the baseline. Moreover, our method only takes 1.69× of the standard training time while being ≈ 5× faster than thestate-of-the-art adversarial meta-learning methods. The code is available at https://github.com/vcl-iisc/robust-few-shot-learning.

10.
Nucleic Acids Res ; 52(5): 2416-2433, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38224455

RESUMEN

Mammalian polynucleotide kinase 3'-phosphatase (PNKP), a DNA end-processing enzyme with 3'-phosphatase and 5'-kinase activities, is involved in multiple DNA repair pathways, including base excision (BER), single-strand break (SSBR), and double-strand break repair (DSBR). However, little is known as to how PNKP functions in such diverse repair processes. Here we report that PNKP is acetylated at K142 (AcK142) by p300 constitutively but at K226 (AcK226) by CBP, only after DSB induction. Co-immunoprecipitation analysis using AcK142 or AcK226 PNKP-specific antibodies showed that AcK142-PNKP associates only with BER/SSBR, and AcK226 PNKP with DSBR proteins. Despite the modest effect of acetylation on PNKP's enzymatic activity in vitro, cells expressing non-acetylable PNKP (K142R or K226R) accumulated DNA damage in transcribed genes. Intriguingly, in striatal neuronal cells of a Huntington's Disease (HD)-based mouse model, K142, but not K226, was acetylated. This is consistent with the reported degradation of CBP, but not p300, in HD cells. Moreover, transcribed genomes of HD cells progressively accumulated DSBs. Chromatin-immunoprecipitation analysis demonstrated the association of Ac-PNKP with the transcribed genes, consistent with PNKP's role in transcription-coupled repair. Thus, our findings demonstrate that acetylation at two lysine residues, located in different domains of PNKP, regulates its distinct role in BER/SSBR versus DSBR.


Asunto(s)
Enzimas Reparadoras del ADN , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Humanos , Ratones , Acetilación , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Mamíferos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Polinucleótido 5'-Hidroxil-Quinasa/genética
12.
Nat Commun ; 14(1): 8169, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071370

RESUMEN

SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.


Asunto(s)
COVID-19 , ADN Glicosilasas , Cricetinae , Animales , Humanos , COVID-19/genética , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genoma , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo
13.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961108

RESUMEN

We previously reported that the loss of activity of an essential DNA repair enzyme, polynucleotide kinase 3'-phosphatase (PNKP), resulted in accumulation of double strand breaks (DSB) in patient's brain genome in Huntington's disease (HD) and Spinocerebellar ataxia type 3 (SCA3). Here we document that PNKP interacts with the nuclear isoform of phosphofructokinase fructose-2,6-bisphosphatase 3 (PFKFB3), which converts fructose-6-phosphate (F6P) into fructose-2,6-bisphosphate (F2,6BP), a potent allosteric modulator of glycolysis. Depletion of PFKFB3 markedly abrogates PNKP activity, thereby affecting PNKP mediated transcription-coupled non-homologous end joining (TC-NHEJ). Both PFKFB3 and F2,6BP levels are significantly lower in the nuclear extracts of HD and SCA3 patients' brains. Exogenous F2,6BP restored PNKP activity in the brain nuclear extracts of those samples. Moreover, delivery of F2,6BP into HD mouse striata-derived neuronal cells restored PNKP activity, transcribed genome integrity and cellular viability. We thus postulate that F2,6BP serves in vivo as a cofactor for proper functionality of PNKP and thereby of brain health. Our results thus provide a compelling rationale for exploring therapeutic use of F2,6BP and related compounds for treating polyQ diseases.

14.
Microb Pathog ; 185: 106429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940062

RESUMEN

Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.


Asunto(s)
Enfermedades de los Peces , Probióticos , Tilapia , Animales , Bacillus subtilis/genética , Pez Cebra , Probióticos/farmacología , Antibacterianos/farmacología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología
15.
Biomed Pharmacother ; 169: 115854, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37951024

RESUMEN

Garlic (Allium sativum) is an important flavouring component in Indian cuisine. Allicin, a sulphur containing compound, is the most abundant component of garlic and has been widely studied for its antimicrobial and antioxidant properties. It is also known to play a role in the regulation of blood pressure and cholesterol levels. Despite the known health benefits associated with allicin, systematic studies on its anti-cancer properties using animal models are very limited. This study aimed to develop a simple method for the extraction of allicin from fresh garlic, study the stability of the extracted compound at various temperatures, and evaluate the antioxidant, anti-proliferative, pro-apoptotic and anti-angiogenic properties in zebrafish. A five-month stability study indicated that allicin remains significantly stable at temperatures 4 °C and below but shows extensive degradation if stored at room temperature. The in vivo studies in zebrafish using a combination of mutants and transgenic lines demonstrated the antioxidant, anti-proliferative, apoptotic and anti-angiogenic properties of allicin. The study highlights the importance of natural bioactive compounds as potential anti-cancer agents that can be studied further.


Asunto(s)
Ajo , Neoplasias , Animales , Pez Cebra , Antioxidantes/farmacología
16.
Vaccines (Basel) ; 11(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37896958

RESUMEN

The application of nanotechnology in aquaculture for developing efficient vaccines has shown great potential in recent years. Nanovaccination, which involves encapsulating antigens of fish pathogens in various polymeric materials and nanoparticles, can afford protection to the antigens and a sustained release of the molecule. Oral administration of nanoparticles would be a convenient and cost-effective method for delivering vaccines in aquaculture while eliminating the need for stressful, labour-intensive injectables. The small size of nanoparticles allows them to overcome the degradative digestive enzymes and help deliver antigens to the target site of the fish more effectively. This targeted-delivery approach would help trigger cellular and humoral immune responses more efficiently, thereby enhancing the protective efficacy of vaccines. This is particularly relevant for combating diseases caused by pathogens like Aeromonas hydrophila, a major fish pathogen responsible for significant morbidity and mortality in the aquaculture sector. While the use of nanoparticle-based vaccines in aquaculture has shown promise, concerns exist about the potential toxicity associated with certain types of nanoparticles. Some nanoparticles have been found to exhibit varying degrees of toxicity, and their safety profiles need to be thoroughly assessed before widespread application. The introduction of nanovaccines has opened new vistas for improving aquaculture healthcare, but must be evaluated for potential toxicity before aquaculture applications. Details of nanovaccines and their mode of action, with a focus on protecting fish from infections and outbreaks caused by the ubiquitous opportunistic pathogen A. hydrophila, are reviewed here.

17.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645927

RESUMEN

Mammalian polynucleotide kinase 3'-phosphatase (PNKP) is a dual-function DNA end-processing enzyme with 3'-phosphatase and 5'-kinase activities, which generate 3'-OH and 5'-phosphate termini respectively, as substrates for DNA polymerase and DNA ligase to complete DNA repair. PNKP is thus involved in multiple DNA repair pathways, including base excision (BER), single-strand break (SSBR), and double-strand break repair (DSBR). However, little is known as to how PNKP functions in such diverse repair processes, which involve distinct sets of proteins. In this study, we report that PNKP is acetylated at two lysine (K142 and K226) residues. While K142 (AcK142) is constitutively acetylated by p300, CBP acetylates K226 (AcK226) only after DSB induction. Co-immunoprecipitation analysis using antibodies specific for PNKP peptides containing AcK142 or AcK226 of PNKP showed that AcK142-PNKP associates only with BER/SSBR, and AcK226 PNKP only with DSBR proteins. Although acetylation at these residues did not significantly affect the enzymatic activity of PNKP in vitro, cells expressing nonacetylable PNKP (K142R or K226R) accumulated DNA damage, specifically in transcribed genes. Intriguingly, in striatal neuronal cells of a Huntington's Disease (HD)-based mouse model, K142, but not K226, was acetylated. This observation is consistent with the reported degradation of CBP but not p300 in HD cells. Moreover, genomes of HD cells progressively accumulated DSBs specifically in the transcribed genes. Chromatin-immunoprecipitation analysis using anti-AcK142 or anti-AcK226 antibodies demonstrated an association of Ac-PNKP with the transcribed genes, consistent with PNKP's role in transcription-coupled repair. Thus, our findings collectively demonstrate that acetylation at two lysine residues located in different domains of PNKP regulates its functionally distinct role in BER/SSBR vs. DSBR.

18.
Chemosphere ; 341: 139882, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37640218

RESUMEN

Microplastics (MPs) have emerged as a major environmental problem in freshwater and marine environments. The effects of these polymers on aquatic life are well studied; however, there is limited knowledge of MP-associated health hazards in humans. We estimated the presence of MPs in different brands of bottled water available in India using the Nile red (NR) staining method. The FTIR examination revealed the presence of polystyrene (PS), polyethylene (PE), and polyamide (PA) in the bottled water samples with PE being the most prevalent one. Zebrafish embryos exposed to different concentrations of fluorescent-tagged polyethylene microplastics (PE-MPs) (10-150 µm) showed accumulation patterns at different time points in various organs. The exposure to PE MPs induced a concentration-dependent ROS activity. The expression of first-line antioxidative defense marker genes were significantly downregulated in embryos exposed to varying concentrations of PE-MPs, suggesting concentration and time-dependent effects on zebrafish. The results of this study suggest that the potential negative consequences on human health could be due to the oxidative stress and time-dependent toxicity of MPs.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Microplásticos/metabolismo , Agua Potable/metabolismo , Plásticos/toxicidad , Plásticos/metabolismo , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/análisis , Polietileno/análisis
19.
Methods Mol Biol ; 2701: 39-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574474

RESUMEN

Endogenous and exogenous genotoxic agents can generate various types of non-ligatable DNA ends at the site of strand break in the mammalian genome. If not repaired, such lesions will impede transcription and replication and can lead to various cellular pathologies. Among various "dirty" DNA ends, 3'-phosphate is one of the most abundant lesions generated in the mammalian cells. Polynucleotide kinase 3'-phosphatase (PNKP) is the major DNA end-processing enzyme for resolving 3'-phosphate termini in the mammalian cells, and thus, it is involved in DNA base excision repair (BER), single-strand break repair, and classical nonhomologous end joining (C-NHEJ)-mediated DNA double-strand break (DSB) repair. The 3'-OH ends generated following PNKP-mediated processing of 3'-P are utilized by a DNA polymerase to fill in the gap, and subsequently, the nick is sealed by a DNA ligase to complete the repair process. Here we describe two novel assay systems to detect phosphate release by PNKP's 3'-phosphatase activity and PNKP-mediated in vitro single-strand break repair with minimal repair components (PNKP, DNA polymerase, and DNA ligase) using either purified proteins or cell-free nuclear extracts from mammalian cells/tissues. These assays are highly reproducible and sensitive, and the researchers would be able to detect any significant difference in PNKP's 3'-phosphatase activity as well as PNKP-mediated single-strand break repair activity in diseased mammalian cells/tissues vs normal healthy controls.


Asunto(s)
Enzimas Reparadoras del ADN , Radiactividad , Animales , Enzimas Reparadoras del ADN/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Reparación del ADN , ADN Ligasas/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/genética , Fosfatos , Monoéster Fosfórico Hidrolasas/metabolismo , Mamíferos/genética
20.
Methods Mol Biol ; 2701: 157-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574481

RESUMEN

Microbes play an important role in regulating cellular responses and the induction of chronic diseases. Infection and chronic inflammation can cause DNA damage, and the accumulation of mutations leads to cancer development. The well-known examples of cancer-associated microbes are Helicobacter pylori in gastric cancer and Fusobacterium nucleatum (Fn), Bacteroides fragilis, and E.coli NC101 in colorectal cancer (CRC). These carcinopathogens modify the expressions of the base excision repair enzymes and cause DNA damage. This chapter will show how Fn can initiate CRC through the downregulation of a critical enzyme of the base excision repair (BER) pathway that subsequently causes accumulation of DNA damage. We used the stem cell-based organoid model and enteroid-derived monolayer (EDM) from the murine and human colon to assess the impact of infection on the expression of BER enzymes on the transcriptional and translational levels and to develop other functional assays. For example, we used this EDM model to assess the inflammatory response, DNA damage response, and physiological responses, where we correlated the level of these parameters to BER enzyme levels.


Asunto(s)
Reparación del ADN , Neoplasias , Humanos , Animales , Ratones , Daño del ADN , Mutación , Neoplasias/genética , Organoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...