Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(4)2024 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-38674334

RESUMEN

There are about 14,000 pseudogenes that are mutated or truncated sequences resembling functional parent genes. About two-thirds of pseudogenes are processed, while others are duplicated. Although initially thought dead, emerging studies indicate they have functional and regulatory roles. We study 14-3-3ζ, an adaptor protein that regulates cytokine signaling and inflammatory diseases, including rheumatoid arthritis, cancer, and neurological disorders. To understand how 14-3-3ζ (gene symbol YWHAZ) performs diverse functions, we examined the human genome and identified nine YWHAZ pseudogenes spread across many chromosomes. Unlike the 32 kb exon-to-exon sequence in YWHAZ, all pseudogenes are much shorter and lack introns. Out of six, four YWHAZ exons are highly conserved, but the untranslated region (UTR) shows significant diversity. The putative amino acid sequence of pseudogenes is 78-97% homologous, resulting in striking structural similarities with the parent protein. The OMIM and Decipher database searches revealed chromosomal loci containing pseudogenes are associated with human diseases that overlap with the parent gene. To the best of our knowledge, this is the first report on pseudogenes of the 14-3-3 family protein and their implications for human health. This bioinformatics-based study introduces a new insight into the complexity of 14-3-3ζ's functions in biology.


Asunto(s)
Proteínas 14-3-3 , Seudogenes , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Exones/genética , Genoma Humano , Seudogenes/genética
2.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508315

RESUMEN

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Asunto(s)
Factor 7 Regulador del Interferón , FN-kappa B , Animales , Humanos , Ratones , Células HEK293 , Inflamación/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Virus Sendai/fisiología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Replicación Viral , Mutación , Regulación de la Expresión Génica/genética , Virus de la Hepatitis Murina/fisiología , Infecciones por Coronavirus/inmunología , Infecciones por Respirovirus/inmunología
3.
Vaccines (Basel) ; 12(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38250904

RESUMEN

Immunosuppressed kidney transplant (KT) recipients produce a weaker response to COVID-19 vaccination than immunocompetent individuals. We tested antiviral IgG response in 99 KT recipients and 66 healthy volunteers who were vaccinated with mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech vaccines. A subgroup of participants had their peripheral blood leukocytes (PBLs) evaluated for the frequency of T helper 1 (Th1) cells producing IL-2, IFN-γ and/or TNF-α, and IL-10-producing T-regulatory 1 (Tr) cells. Among KT recipients, 45.8% had anti-SARS-CoV-2 IgG compared to 74.1% of healthy volunteers (p = 0.009); also, anti-viral IgG levels were lower in recipients than in volunteers (p = 0.001). In terms of non-responders (≤2000 U/mL IgG), Moderna's group had 10.8% and Pfizer-BioNTech's group had 34.3% of non-responders at 6 months (p = 0.023); similarly, 15.7% and 31.3% were non-responders in Moderna and Pfizer-BioNTech groups at 12 months, respectively (p = 0.067). There were no non-responders among controls. Healthy volunteers had higher Th1 levels than KT recipients, while Moderna produced a higher Th1 response than Pfizer-BioNTech. In contrast, the Pfizer-BioNTech vaccine induced a higher Tr1 response than the Moderna vaccine (p < 0.05); overall, IgG levels correlated with Th1(fTTNF-α)/Tr1(fTIL-10) ratios. We propose that the higher number of non-responders in the Pfizer-BioNTech group than the Moderna group was caused by a more potent activity of regulatory Tr1 cells in KT recipients vaccinated with the Pfizer-BioNTech vaccine.

4.
mBio ; 14(5): e0061123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37712680

RESUMEN

IMPORTANCE: Virus infection triggers induction of interferon (IFN)-stimulated genes (ISGs), which ironically inhibit viruses themselves. We identified Tudor domain-containing 7 (TDRD7) as a novel antiviral ISG, which inhibits viral replication by interfering with autophagy pathway. Here, we present a molecular basis for autophagy inhibitory function of TDRD7. TDRD7 interacted with adenosine monophosphate (AMP)-activated protein kinase (AMPK), the kinase that initiates autophagy, to inhibit its activation. We identified domains required for the interaction; deleting AMPK-interacting domain blocked antiAMPK and antiviral activities of TDRD7. We used primary cells and mice to evaluate the TDRD7-AMPK antiviral pathway. TDRD7-deficient primary mouse cells exhibited enhanced AMPK activation and viral replication. Finally, TDRD7 knockout mice showed increased susceptibility to respiratory virus infection. Therefore, our study revealed a new antiviral pathway of IFN and its contribution to host response. Our results have therapeutic potential; a TDRD7-derived peptide may be an effective AMPK inhibitor with application as antiviral agent.


Asunto(s)
Interferones , Virosis , Animales , Ratones , Interferones/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Replicación Viral/genética , Antivirales/farmacología , Inmunidad Innata , Ribonucleoproteínas/genética
5.
J Public Health Manag Pract ; 29(6): 845-853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37738597

RESUMEN

CONTEXT: Prior to the COVID-19 pandemic, wastewater influent monitoring for tracking disease burden in sewered communities was not performed in Ohio, and this field was only on the periphery of the state academic research community. PROGRAM: Because of the urgency of the pandemic and extensive state-level support for this new technology to detect levels of community infection to aid in public health response, the Ohio Water Resources Center established relationships and support of various stakeholders. This enabled Ohio to develop a statewide wastewater SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) monitoring network in 2 months starting in July 2020. IMPLEMENTATION: The current Ohio Coronavirus Wastewater Monitoring Network (OCWMN) monitors more than 70 unique locations twice per week, and publicly available data are updated weekly on the public dashboard. EVALUATION: This article describes the process and decisions that were made during network initiation, the network progression, and data applications, which can inform ongoing and future pandemic response and wastewater monitoring. DISCUSSION: Overall, the OCWMN established wastewater monitoring infrastructure and provided a useful tool for public health professionals responding to the pandemic.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Ohio , Pandemias/prevención & control , Salud Pública , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2
6.
Viruses ; 15(7)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37515265

RESUMEN

Inflammatory responses during virus infection differentially impact the host. Managing inflammatory responses is essential in controlling viral infection and related diseases. Recently, we identified a cellular anti-inflammatory mechanism, RIKA (Repression of IRF3-mediated inhibition of NF-κB activity), which controls viral inflammation and pathogenesis. The RIKA function of IRF3 may be explored further in other inflammatory diseases beyond viral infection.


Asunto(s)
Transducción de Señal , Virosis , Humanos , FN-kappa B/metabolismo , Inflamación , Inmunidad Innata
7.
Autophagy Rep ; 1(1): 83-87, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507301

RESUMEN

IRF3 (interferon regulatory factor 3) is a critical component of the antiviral innate immune response. IRF3 deficiency causes detrimental effects to the host during virus infection. Dysregulation of IRF3 functions is associated with viral, inflammatory, and hepatic diseases. Both transcriptional and pro-apoptotic activities of IRF3 are involved in the exacerbated inflammation and apoptosis in liver injury induced by ethanol and high-fat diets. Therefore, regulation of IRF3 activities has consequences, and it is a potential therapeutic target for infectious and inflammatory diseases. We recently revealed that IRF3 is degraded by a small molecule, auranofin, by activating the cellular macroautophagy/autophagy pathway. Autophagy is a catabolic pathway that contributes to cellular homeostasis and antiviral host defense. Degradation of IRF3 by autophagy may be a novel strategy used by the viruses to their benefit. In addition, IRF3 functions are harmful in other diseases, including liver injury and bacterial infection. A better understanding of the role of autophagy in regulating IRF3 functions has significant implications in developing therapeutic strategies. Therefore, autophagy provides checks and balances in the innate immune response.

8.
Proc Natl Acad Sci U S A ; 119(37): e2121385119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067309

RESUMEN

Interferon (IFN) regulatory factor 3 (IRF3) is a transcription factor activated by phosphorylation in the cytoplasm of a virus-infected cell; by translocating to the nucleus, it induces transcription of IFN-ß and other antiviral genes. We have previously reported IRF3 can also be activated, as a proapoptotic factor, by its linear polyubiquitination mediated by the RIG-I pathway. Both transcriptional and apoptotic functions of IRF3 contribute to its antiviral effect. Here, we report a nontranscriptional function of IRF3, namely, the repression of IRF3-mediated NF-κB activity (RIKA), which attenuated viral activation of NF-κB and the resultant inflammatory gene induction. In Irf3-/- mice, consequently, Sendai virus infection caused enhanced inflammation in the lungs. Mechanistically, RIKA was mediated by the direct binding of IRF3 to the p65 subunit of NF-κB in the cytoplasm, which prevented its nuclear import. A mutant IRF3 defective in both the transcriptional and the apoptotic activities was active in RIKA and inhibited virus replication. Our results demonstrated IRF3 deployed a three-pronged attack on virus replication and the accompanying inflammation.


Asunto(s)
Inmunidad Innata , Factor 3 Regulador del Interferón , FN-kappa B , Neumonía Viral , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Expresión Génica , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Ratones , FN-kappa B/metabolismo , Neumonía Viral/genética , Neumonía Viral/inmunología , Virus Sendai
9.
Viruses ; 14(9)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146835

RESUMEN

Wastewater-based epidemiology (WBE) is a popular tool for the early indication of community spread of infectious diseases. WBE emerged as an effective tool during the COVID-19 pandemic and has provided meaningful information to minimize the spread of infection. Here, we present a combination of analyses using the correlation of viral gene copies with clinical cases, sequencing of wastewater-derived RNA for the viral mutants, and correlative analyses of the viral gene copies with the bacterial biomarkers. Our study provides a unique platform for potentially using the WBE-derived results to predict the spread of COVID-19 and the emergence of new variants of concern. Further, we observed a strong correlation between the presence of SARS-CoV-2 and changes in the microbial community of wastewater, particularly the significant changes in bacterial genera belonging to the families of Lachnospiraceae and Actinomycetaceae. Our study shows that microbial biomarkers could be utilized as prediction tools for future infectious disease surveillance and outbreak responses. Overall, our comprehensive analyses of viral spread, variants, and novel bacterial biomarkers will add significantly to the growing body of literature on WBE and COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Biomarcadores , COVID-19/epidemiología , Humanos , Pandemias , ARN , ARN Viral , SARS-CoV-2/genética , Aguas Residuales
10.
Immuno ; 2(1): 153-169, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35252965

RESUMEN

Virus-infected cells trigger a robust innate immune response and facilitate virus replication. Here, we review the role of autophagy in virus infection, focusing on both pro-viral and anti-viral host responses using a select group of viruses. Autophagy is a cellular degradation pathway operated at the basal level to maintain homeostasis and is induced by external stimuli for specific functions. The degradative function of autophagy is considered a cellular anti-viral immune response. However, autophagy is a double-edged sword in viral infection; viruses often benefit from it, and the infected cells can also use it to inhibit viral replication. In addition to viral regulation, autophagy pathway proteins also function in autophagy-independent manners to regulate immune responses. Since viruses have co-evolved with hosts, they have developed ways to evade the anti-viral autophagic responses of the cells. Some of these mechanisms are also covered in our review. Lastly, we conclude with the thought that autophagy can be targeted for therapeutic interventions against viral diseases.

11.
PLoS One ; 17(1): e0261689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35061714

RESUMEN

The effects of normal and altered intestinal microbiota on murine retroviral transmission via the gastrointestinal tract (GIT) are diverse. The role of orally administered antibiotic treatment (ABX) on viral transmission, GIT microbial dysbiosis and subsequent pathogenesis of Moloney Murine Leukemia virus-temperature sensitive 1 (ts1) on BALB/c mice were studied. BALB/c mice were divided into four groups: ABXts1-Treatment/Infection;ABX-Treatment/No infection;ts1-No treatment/Infection;Ctrl (control)-No treatment/No infection. ABXts1 and ABX groups showed a significant phylogenetic shift (ANOSIM p-value = 0.001) in alpha and beta diversity comparisons for microbial community composition compared to Ctrl group. Mice in the ABXts1 and ABX groups showed megacolon compared to ts1 and Ctrl groups; ABXts1 and ts1 groups showed hepatosplenomegaly, thymus enlargement, and mesenteric lymphadenopathy compared to ABX and Ctrl groups. Ctrl group had no abnormal manifestations. ABX treatment and ts1 infection uniquely affect microbial community when compared to control: ABXts1 and ABX groups significantly reduce microbiome diversity by over 80% and ts1 group by over 30%. ABXts1 and ts1 groups' viral load and clinical manifestations of infection were comparable; antibiotic treatment did not notably affect ts1 infection. Transmission and pathophysiology of ts1 infection were not significantly altered by the microbial composition of the GI tract, but ts1 viral infection did result in microbial dysbiosis independent of antibiotic treatment.


Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Virus de la Leucemia Murina de Moloney/metabolismo , Infecciones por Retroviridae , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/transmisión
12.
Immunobiology ; 226(6): 152145, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34628289

RESUMEN

The 14-3-3 proteins are known for their functions related to the cell cycle and play a prominent role in cancer-related diseases. Recent studies show that 14-3-3 proteins are also regulators of immune responses and are involved in the pathogenesis of autoimmune and infectious diseases. This focused review highlights the significant and recent studies on how 14-3-3 proteins influence innate and adaptive immune responses; specifically, their roles as immunogens and cytokine signaling regulators are discussed. These revelations have added numerous questions to the pre-existing list of challenges, including understanding the 14-3-3 proteins' mechanism of immunogenicity to dissecting the isoform-specific immune regulations.


Asunto(s)
Proteínas 14-3-3/fisiología , Inmunomodulación , Proteínas 14-3-3/química , Inmunidad Adaptativa , Animales , Antígenos/inmunología , Citocinas/metabolismo , Humanos , Inmunidad Innata , Transducción de Señal , Relación Estructura-Actividad
13.
J Biol Chem ; 297(5): 101274, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619149

RESUMEN

The ubiquitously expressed transcription factor interferon (IFN) regulatory factor 3 (IRF3) is critical for the induction of antiviral genes, e.g., type-I IFN. In addition to its transcriptional function, IRF3 also activates a nontranscriptional, proapoptotic signaling pathway. While the proapoptotic function of IRF3 protects against viral infections, it is also involved in harmful immune responses that trigger hepatocyte cell death and promote liver disease. Thus, we hypothesized that a small-molecule inhibitor of the proapoptotic activity of IRF3 could alleviate fatty-acid-induced hepatocyte cell death. We conducted a high-throughput screen, which identified auranofin as a small-molecule inhibitor of the proapoptotic activity of IRF3. In addition to the nontranscriptional apoptotic pathway, auranofin also inhibited the transcriptional activity of IRF3. Using biochemical and genetic tools in human and mouse cells, we uncovered a novel mechanism of action for auranofin, in which it induces cellular autophagy to degrade IRF3 protein, thereby suppressing IRF3 functions. Autophagy-deficient cells were unable to degrade IRF3 upon auranofin treatment, suggesting that the autophagic degradation of IRF3 is a novel approach to regulate IRF3 activities. Using a physiologically relevant in vitro model, we demonstrated that auranofin inhibited fatty-acid-induced apoptotic cell death of hepatocytes. In summary, auranofin is a novel inhibitor of IRF3 functions and may represent a potential therapeutic option in diseases where IRF3 is deleterious.


Asunto(s)
Apoptosis/efectos de los fármacos , Auranofina/farmacología , Autofagia/efectos de los fármacos , Factor 3 Regulador del Interferón/metabolismo , Proteolisis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Animales , Humanos , Factor 3 Regulador del Interferón/genética , Ratones , Células RAW 264.7
14.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34408018

RESUMEN

Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1ß. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1ß levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacología , Artritis/inducido químicamente , Inflamación/tratamiento farmacológico , Proteínas 14-3-3/genética , Proteínas 14-3-3/inmunología , Animales , Anticuerpos , Artritis/genética , Artritis/metabolismo , Densidad Ósea , Enfermedades Óseas/metabolismo , Enfermedades Óseas/prevención & control , Colágeno/metabolismo , Colágeno/toxicidad , Femenino , Adyuvante de Freund/farmacología , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Inmunización Pasiva , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Terpenos/toxicidad
15.
Viruses ; 13(4)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805458

RESUMEN

The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3-/- mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNß), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3's RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , Factor 3 Regulador del Interferón/inmunología , SARS-CoV-2/fisiología , Animales , COVID-19/virología , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Procesamiento Proteico-Postraduccional , SARS-CoV-2/genética
16.
Physiol Genomics ; 53(2): 51-60, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275540

RESUMEN

A novel coronavirus disease, COVID-19, has created a global pandemic in 2020, posing an enormous challenge to healthcare systems and affected communities. COVID-19 is caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) that manifests as bronchitis, pneumonia, or a severe respiratory illness. SARS-CoV-2 infects human cells via binding a "spike" protein on its surface to angiotensin-converting enzyme 2 (ACE2) within the host. ACE2 is crucial for maintaining tissue homeostasis and negatively regulates the renin-angiotensin-aldosterone system (RAAS) in humans. The RAAS is paramount for normal function in multiple organ systems including the lungs, heart, kidney, and vasculature. Given that SARS-CoV-2 internalizes via ACE2, the resultant disruption in ACE2 expression can lead to altered tissue function and exacerbate chronic diseases. The widespread distribution and expression of ACE2 across multiple organs is critical to our understanding of the varied clinical outcomes of COVID-19. This perspective review based on the current literature was prompted to show how disruption of ACE2 by SARS-CoV-2 can affect different organ systems.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/epidemiología , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , Pandemias , Unión Proteica , SARS-CoV-2/fisiología , Internalización del Virus
17.
Proc Natl Acad Sci U S A ; 117(40): 25008-25017, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32968020

RESUMEN

IL-17A is a therapeutic target in many autoimmune diseases. Most nonhematopoietic cells express IL-17A receptors and respond to extracellular IL-17A by inducing proinflammatory cytokines. The IL-17A signal transduction triggers two broad, TRAF6- and TRAF5-dependent, intracellular signaling pathways to produce representative cytokines (IL-6) and chemokines (CXCL-1), respectively. Our limited understanding of the cross-talk between these two branches has generated a crucial gap of knowledge, leading to therapeutics indiscriminately blocking IL-17A and global inhibition of its target genes. In previous work, we discovered an elevated expression of 14-3-3 proteins in inflammatory aortic disease, a rare human autoimmune disorder with increased levels of IL-17A. Here we report that 14-3-3ζ is essential for IL-17 signaling by differentially regulating the signal-induced IL-6 and CXCL-1. Using genetically manipulated human and mouse cells, and ex vivo and in vivo rat models, we uncovered a function of 14-3-3ζ. As a part of the molecular mechanism, we show that 14-3-3ζ interacts with several TRAF proteins; in particular, its interaction with TRAF5 and TRAF6 is increased in the presence of IL-17A. In contrast to TRAF6, we found TRAF5 to be an endogenous suppressor of IL-17A-induced IL-6 production, an effect countered by 14-3-3ζ. Furthermore, we observed that 14-3-3ζ interaction with TRAF proteins is required for the IL-17A-induced IL-6 levels. Together, our results show that 14-3-3ζ is an essential component of IL-17A signaling and IL-6 production, an effect that is suppressed by TRAF5. To the best of our knowledge, this report of the 14-3-3ζ-TRAF5 axis, which differentially regulates IL-17A-induced IL-6 and CXCL-1 production, is unique.


Asunto(s)
Enfermedades Autoinmunes/genética , Quimiocina CXCL1/genética , Interleucina-17/genética , Interleucina-6/genética , Proteínas 14-3-3/genética , Animales , Enfermedades Autoinmunes/patología , Quimiocinas/genética , Citocinas/genética , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratas , Transducción de Señal/genética , Factor 5 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/genética
18.
J Biol Chem ; 295(20): 6811-6822, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32273341

RESUMEN

The interferon system is the first line of defense against virus infection. Recently, using a high-throughput genetic screen of a human interferon-stimulated gene short-hairpin RNA library, we identified a viral restriction factor, TDRD7 (Tudor domain-containing 7). TDRD7 inhibits the paramyxo-/pneumoviruses (e.g. Sendai virus and respiratory syncytial virus) by interfering with the virus-induced cellular autophagy pathway, which these viruses use for their replication. Here, we report that TDRD7 is a viral restriction factor against herpes simplex virus (HSV-1). Using knockdown, knockout, and ectopic expression systems, we demonstrate the anti-HSV-1 activity of TDRD7 in multiple human and mouse cell types. TDRD7 inhibited the virus-activated AMP-activated protein kinase (AMPK), which was essential for HSV-1 replication. Genetic ablation or chemical inhibition of AMPK activity suppressed HSV-1 replication in multiple human and mouse cells. Mechanistically, HSV-1 replication after viral entry depended on AMPK but not on its function in autophagy. The antiviral activity of TDRD7 depended on its ability to inhibit virus-activated AMPK. In summary, our results indicate that the newly identified viral restriction factor TDRD7 inhibits AMPK and thereby blocks HSV-1 replication independently of the autophagy pathway. These findings suggest that AMPK inhibition represents a potential strategy to manage HSV-1 infections.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Herpesvirus Humano 1/fisiología , Ribonucleoproteínas/metabolismo , Replicación Viral , Proteínas Quinasas Activadas por AMP/genética , Animales , Chlorocebus aethiops , Células HeLa , Humanos , Ratones , Ribonucleoproteínas/genética , Células Vero
19.
Viruses ; 12(4)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295140

RESUMEN

Interferon (IFN) regulatory factor 3 (IRF3) is the key transcription factor for the induction of IFN and antiviral genes. The absence of antiviral genes in IRF3 deficiency leads to susceptibility to a wide range of viral infections. Previously, we uncovered a function for nontranscriptional IRF3 (nt-IRF3), RLR (RIG-I-like receptor)-induced IRF3-mediated pathway of apoptosis (RIPA), which triggers apoptotic killing of virus-infected cells. Using knock-in mice expressing a transcriptionally inactive, but RIPA-active, IRF3 mutant, we demonstrated the relative contribution of RIPA to host antiviral defense. Given that RIPA is a cellular antiviral pathway, we hypothesized that small molecules that promote RIPA in virus-infected cells would act as antiviral agents. To test this, we conducted a high throughput screen of a library of FDA-approved drugs to identify novel RIPA activators. Our screen identified doxorubicin as a potent RIPA-activating agent. In support of our hypothesis, doxorubicin inhibited the replication of vesicular stomatitis virus, a model rhabdovirus, and its antiviral activity depended on its ability to activate IRF3 in RIPA. Surprisingly, doxorubicin inhibited the transcriptional activity of IRF3. The antiviral activity of doxorubicin was expanded to flavivirus and herpesvirus that also activate IRF3. Mechanistically, doxorubicin promoted RIPA by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Finally, we validated these results using another RIPA-activating compound, pyrvinium pamoate, which showed a similar antiviral effect without affecting the transcriptional activity of IRF3. Therefore, we demonstrate that the RIPA branch of IRF3 can be targeted therapeutically to prevent virus infection.


Asunto(s)
Antivirales/farmacología , Apoptosis/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Factor 3 Regulador del Interferón/metabolismo , Transducción de Señal/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Doxorrubicina/farmacología , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Bibliotecas de Moléculas Pequeñas , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos
20.
J Mol Med (Berl) ; 98(1): 11-23, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31664480

RESUMEN

Aortitis can be the manifestation of an underlying infectious or noninfectious disease process. An autoimmune cause is suggested in a large proportion of noninfectious causes. Similar to other autoimmune diseases, the pathophysiology of aortitis has been investigated in detail, but the etiology remains unknown. Most cases of aortitis often go undetected for a long time and are often identified at late stages of the disease. Recent advances in imaging techniques have significantly improved the diagnosis of aortitis. However, significant challenges associated with the imaging techniques limit their use. Several routine inflammation-based markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and inflammatory cytokines, are nonspecific and, therefore, have limited use in the diagnosis of aortitis. The search for more specific serum biomarkers, which can facilitate detection and progression is under progress. Several autoantibodies have been identified, but assigning their role in the pathogenesis as well as their specificity remains a challenge. The current review addresses some of these issues in detail. KEY MESSAGES: • Noninfectious aortitis is an autoimmune disease. • Several biomarkers, including cytokines and autoantibodies, are increased in aortitis. • Imaging techniques, commonly used to detect aortitis, are associated with the high cost and technical challenges. • There is a need to develop low-cost biomarker-based detection tools. • The knowledge of biomarkers in aortitis detection is discussed.


Asunto(s)
Aortitis/sangre , Aortitis/diagnóstico , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/diagnóstico , Anciano , Anciano de 80 o más Años , Aortitis/terapia , Autoanticuerpos/sangre , Biomarcadores/sangre , Sedimentación Sanguínea , Proteína C-Reactiva/análisis , Citocinas/sangre , Femenino , Humanos , Terapia de Inmunosupresión/métodos , Inflamación/sangre , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...