Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 257: 112584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38735072

RESUMEN

Herein we report four new arene ruthenium(II) complexes [RuII(η6-p-cymene)(L1)к1(S)Cl2] (C1), [RuII(η6-benzene)(L1)к1(S)Cl2] (C2) where L1 is N-((2,6-dimethylphenyl)carbamothioyl)benzamide (L1), and [RuII(η6-p-cymene)(L2)к1(S)Cl2] (C3), [RuII(η6-benzene)(L2)к1(S)Cl2] (C4) where L2 is N-((2,6-diisopropylphenyl)carbamothioyl)benzamide (L2) which were synthesized and evaluated for biological activity. The monodentate coordination of thione sulphur (S) to ruthenium ion along with two terminal chloride was confirmed by X-Ray diffraction analysis thus revealing a typical "piano-stool" pseudo tetrahedral geometry. DPPH radical scavenging activity showed that ligands were less efficient however on complex formation it showed significant efficacy with C4 showing the highest activity. The ligands and ruthenium complexes exhibited minimal to no cytotoxic effects on HEK cells within the concentration range of 10-300 µM. Evaluating the cytotoxicity against prostate cancer cells (DU145) L1, L2 and C1 displayed more pronounced cytotoxic activity with C1 showing high cytotoxicity against the cancer cells, in comparison to cisplatin indicating its potential for further investigation and analysis. Considering this, compound C1 was used to further study its interaction with BSA using fluorescence spectroscopy and it was found to be 2.64 × 106 M-1. Findings from CD spectroscopy indicate the binding in the helix region which was further confirmed with the molecular docking studies.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Tiourea , Rutenio/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Humanos , Tiourea/química , Tiourea/farmacología , Tiourea/análogos & derivados , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Línea Celular Tumoral , Cristalografía por Rayos X , Albúmina Sérica Bovina/química
2.
Inorg Chem ; 63(23): 10455-10465, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743433

RESUMEN

Organomercurials (RHg+), especially methylmercury (MeHg+) and ethylmercury (EtHg+), are considered to be more neurotoxic than the inorganic counterpart (Hg2+). They cause massive DNA damage in cells, especially in neurons, where cellular glutathione (GSH) levels are significantly low. However, the mechanism by which RHg+ exerts massive DNA damage at cytotoxic concentrations in brain cells remains obscure. In this study, we investigated the effect of RHg+ on the structural and electronic properties of nucleosides and its effects on DNA damage. The direct interaction of RHg+ with the nucleoside significantly weakens N-glycosidic bonds, decreases the C-H bond energy of sugar moieties, and increases the electrophilicity of the C8-center of purine bases. As a consequence, RHg+-conjugated DNA molecules are extremely labile and highly sensitive to any nucleophiles/radicals present in GSH-depleted cells and, thus, undergo enhanced oxidative and unusual alkylative DNA damage. We also report a functional model of organomercurial lyase, which showed excellent cytoprotective effect against RHg+-induced cytotoxicity; this reverses the activity of glutathione reductase inhibited by MeHgCl and ceases oxidative and alkylating DNA damage. This intriguing finding provides new mechanistic insight into the mode of action of organomercurials in GSH-depleted cells and their adverse effects on individuals with neurodegenerative disorders associated with oxidative stress.


Asunto(s)
Daño del ADN , Glutatión , Compuestos de Metilmercurio , Compuestos de Metilmercurio/farmacología , Compuestos de Metilmercurio/química , Glutatión/metabolismo , Glutatión/química , Daño del ADN/efectos de los fármacos , Humanos , ADN/química , ADN/efectos de los fármacos , Estructura Molecular , Animales , Supervivencia Celular/efectos de los fármacos , Teoría Funcional de la Densidad
3.
ACS Omega ; 7(5): 4150-4157, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155909

RESUMEN

In the current study, nanoparticles (NPs) of titanium nitride (50-70 nm) in varying amounts (0-4 wt %) were uniformly suspended in an epoxy solution and then used to cast the films of nanocomposites. The same formulations were used to prepare the lap shear strength joints using stainless-steel coupons with the help of standard molds and then employing the compression molding technique. The nanocomposites films were characterized for their physical properties, thermal stability, friction performance, and scratch hardness, while the lap shear strength of joints prepared using nanocomposites as nanoadhesives was evaluated. The failed surfaces of joints were investigated using scanning electron microscopy (SEM) to understand the failure modes, that is, micro-failure mechanisms, while the cross-sectional surfaces of fractured nanocomposites were investigated using SEM to identify the distribution of NPs. The increase in the contents of NPs in the epoxy led to an almost linear increase in the selected performance properties. The highest (70%) improvement in the lap shear strength was observed with 4 wt % NPs, which was correlated with an increase in the hardness of composites.

4.
Analyst ; 147(1): 165-177, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34870658

RESUMEN

Extraction and concentration of pure nucleic acid from complex biofluids are the prerequisite for nucleic acid amplification test (NAAT) applications in pathogen detection, biowarfare prevention, and genetic diseases. However, conventional spin-column mediated nucleic acid extraction is constricted by the requirement for costly power-intensive centralized lab infrastructure, making it unsuitable for limited-resource settings. Significant progress in lab-on-a-chip devices or cartridges (e.g., Cepheid GeneXpert®) that integrate nucleic acid extraction and amplification has been made, but these approaches either require additional equipment or are costly. Similarly, their complexities make them difficult to fabricate in low-resource settings by the end-user themselves. The application of magnetic particles such as silica-coated iron oxide beads for nucleic acid extraction is relatively instrument-free, rapid, user-friendly, and amenable to automation. But, they rely on hazardous chaotropic salt chemistry and ethanol desalting that could limit their efficacy for downstream NAATs. Recent advances in several types of novel material (e.g., polyamine) coated magnetic bead-based chaotropic salt-free extraction methods offer a possible solution to this problem. However, these materials also involve multistep synthesis impermissible in limited-resource settings. To offer a possible instrument-free magnetic particle-based nucleic acid extraction doable at limited-resource settings, we investigated the nucleic acid capture ability of two chitosan-coated magnetic particles that are preparable by minimally trained personnel using only a water bath and a magnetic stirrer within 6-8 h. We quantitatively probed the efficiency of the passive (without any electrical shaking or vortex-aided) DNA magnetocapture (i.e., binding to chitosan magnetic particles, physical separation from its sample of origin, and release from the particles) using UV260. To explore their suitability towards clinically relevant sensitive downstream NAATs, 100-1000 copies (i.e., in the order of zeptomole) of Escherichia coli (E. coli) or human genomic DNA from aqueous solution, crude cell lysate, and fetal bovine serum were extracted by them and then successfully detected using quantitative real-time loop-mediated isothermal amplification (LAMP) or real-time polymerase chain reaction (PCR). Alongside, their suitability with gel-based LAMP, colorimetric LAMP, and in situ (on beads) LAMP was also probed. The required optimization of the amplification methods has been discussed. Overall, the turnaround time for the magnetocapture combined with NAAT was 1.5-2 h and is thus expected to aid in rapid clinical decision making. With the ease of preparation, reproducibility, and compatibility with downstream NAATs, we anticipate that these magnetic particles would facilitate the expansion and decentralization of nucleic acid-based diagnosis for limited-resource settings.


Asunto(s)
Quitosano , Ácidos Nucleicos , Escherichia coli , Humanos , Fenómenos Magnéticos , Reproducibilidad de los Resultados
5.
Chem Asian J ; 14(24): 4582-4587, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31574211

RESUMEN

Methylation and demethylation of mercury compounds are two important competing processes that control the net production of highly toxic mercury alkyls, methylmercury (MeHg+ ) and dimethylmercury (Me2 Hg), in environment. Although the microbial and the photochemical methylation and demethylation processes are well studied in recent years but the chemical methylation and demethylation processes have not been studied well. Herein, we report for the first time that the CuSe nanosheet has remarkable ability to activate the highly inert Hg-C bonds of various MeHg+ and Me2 Hg compounds at room temperature (21 °C). It facilitates the conversion of MeHg+ into Me2 Hg in the absence of any proton donors. Whereas, in the presence of any proton source, it has unique ability to degrade MeHg+ into CH4 and inorganic mercury (Hg2+ ). Detailed studies revealed that the relatively fast Hg-C bond cleavage was observed in case of MeHgSPh or MeHgI in comparison to MeHgCl, indicating that the Hg-C bond in MeHgCl is relatively inert in nature. On the other hand, the Hg-C bond in Me2 Hg is considered to be exceedingly inert and, thus, difficult to cleave at room temperature. However, CuSe nanosheets showed unique ability to degrade Me2 Hg into CH4 and Hg2+ , via the formation of MeHg+ , under acidic conditions at room temperature. DFT calculations revealed that the Hg-C bond activation occurs through adsorption on the surface of (100)-faceted CuSe nanosheets.

6.
Chemistry ; 25(55): 12810-12819, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31298434

RESUMEN

The Hg-C bond of MeHgCl, a ubiquitous environmental toxicant, is notoriously inert and exceedingly difficult to cleave. The cleavage of the Hg-C bond of MeHgCl at low temperature, therefore, is of significant importance for human health. Among various bis(imidazole)-2-selones Ln Se (n=1-4, or 6), the three-spacer L3 Se shows extraordinarily high reactivity in the degradation of various mercury alkyls including MeHgCl because of its unique ability to coordinate through κ2 -fashion, in which both the Se atoms simultaneously attack the Hg center of mercury alkyls for facile Hg-C bond cleavage. It has the highest softness (σ) parameter and the lowest HOMO(Ln Se)-LUMO(MeHgX) energy gap and, thus, L3 Se is the most reactive among Ln Se towards MeHgX (X=Cl or I). L3 Se is highly efficient, more than L1 Se, in restoring the activity of antioxidant enzyme glutathione reductase (GR) that is completely inhibited by MeHgCl; 80 % GR activity is recovered by L3 Se relative to 50 % by L1 Se. It shows an excellent cytoprotective effect in liver cells against MeHgCl-induced oxidative stress by protecting vital antioxidant enzymes from inhibition caused by MeHgCl and, thus, does not allow to increase the intracellular reactive oxygen species (ROS) levels. Furthermore, it protects the mitochondrial membrane potential (ΔΨm ) from perturbation by MeHgCl. Major Hg-responsive genes analyses demonstrate that L3 Se plays a significant role in MeHg+ detoxification in liver cells.


Asunto(s)
Antioxidantes/farmacología , Glutatión Reductasa/metabolismo , Sustancias Peligrosas/análisis , Mercurio/análisis , Mercurio/toxicidad , Compuestos Organometálicos/química , Especies Reactivas de Oxígeno/metabolismo , Selenio/química , Antioxidantes/química , Citoprotección , Glutatión Reductasa/química , Sustancias Peligrosas/química , Humanos , Mercurio/química , Especies Reactivas de Oxígeno/química , Selenio/análisis
7.
Inorg Chem ; 58(10): 6628-6638, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31067034

RESUMEN

The sulfur-containing antioxidant molecule ergothioneine with an ability to protect metalloenzymes from reactive oxygen species (ROS) has attracted significant interest in both chemistry and biology. Herein, we demonstrated the importance of hydrogen bonding in S-oxygenation reactions between various thiones and H2O2 and its significance in protecting the metal ion from H2O2-mediated oxidation. Among all imidazole- and benzimidazole-based thiones (1-10), ImMeSH (2) showed the highest reactivity toward H2O2-almost 10 and 75 times more reactive than N, N'-disubstituted ImMeSMe (5) and BzMeSMe (10), respectively. Moreover, metal-bound ImMeSH (2) of [TpmCu(2)]+ (13) was found to be 51 and 1571 times more reactive toward H2O2 than the metal-bound ImMeSMe (5) of [TpmCu(5)]+ (16), and BzMeSMe (10) of [TpmCu(10)]+ (21), respectively. The electron-donating N-Me substituent and the free N-H group at the imidazole ring played a very crucial role in the high reactivity of ImMeSH toward H2O2. The initial adduct formation between ImMeSH and H2O2 (ImMeSH·H2O2) was highly facilitated (-23.28 kcal mol-1) due to the presence of a free N-H group, which leads to its faster oxygenation than N, N'-disubstituted ImMeSMe (5) or BzMeSMe (10). As a result, ImMeSH (2) showed a promising effect in protecting the metal ion from H2O2-mediated oxidation. It protected biomolecules from Cu(I)-mediated oxidative damage of through coordination to the Cu(I) center of [TpmCu(CH3CN)]+ (11), whereas metal-bound ImMeSMe or BzMeSMe failed to protect biomolecules under identical reaction conditions.


Asunto(s)
Cobre/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tionas/química , Antioxidantes/química , Bencimidazoles/química , Cobre/química , Enlace de Hidrógeno , Peróxido de Hidrógeno/química , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
8.
ACS Appl Mater Interfaces ; 11(5): 4766-4776, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30644707

RESUMEN

Synthetic organic molecules, which can selectively convert excess intracellular copper (Cu) ions to nanozymes with an ability to protect cells from oxidative stress, are highly significant in developing therapeutic agents against Cu-related disorder like Wilson's disease. Here, we report 1,3-bis(2-hydroxyethyl)-1 H-benzoimidazole-2-selenone (1), which shows a remarkable ability to remove Cu ion from glutathione, a major cytosolic Cu-binding ligand, and thereafter converts it into copper selenide (CuSe) nanozyme that exhibits remarkable glutathione peroxidase-like activity, at cellular level of H2O2 concentration, with excellent cytoprotective effect against oxidative stress in hepatocyte. Cu-driven deselenization of 1, under physiologically relevant conditions, occurred in two steps. The activation of C═Se bond by metal ion is the crucial first step, followed by cleavage of the metal-activated C═Se bond, initiated by the OH group of N-(CH2)2OH substituent through neighboring group participation (deselenization step), resulted in the controlled synthesis of various types of Cu2-xSe nanocrystals (NCs) (nanodisks, nanocubes, and nanosheets) and tetragonal Cu3Se2 NCs, depending upon the oxidation state of the Cu ion used to activate the C═Se bond. Deselenization of 1 is highly metal-selective. Except Cu, other essential metal ions, including Mn2+, Fe2+, Co2+, Ni2+, or Zn2+, failed to produce metal selenide under identical reaction conditions. Moreover, no significant change in the expression level of Cu-metabolism-related genes, including metallothioneines MT1A, is observed in liver cells co-treated with Cu and 1, as opposed to the large increase in the concentrations of these genes observed in cells treated with Cu alone, suggesting the participation of 1 in Cu homeostasis in hepatocyte.


Asunto(s)
Antioxidantes , Bencimidazoles , Cobre , Nanopartículas , Compuestos de Selenio , Antioxidantes/química , Antioxidantes/metabolismo , Bencimidazoles/química , Bencimidazoles/metabolismo , Supervivencia Celular/efectos de los fármacos , Cobre/análisis , Cobre/metabolismo , Glutatión Peroxidasa/química , Glutatión Peroxidasa/metabolismo , Células Hep G2 , Humanos , Peróxido de Hidrógeno/toxicidad , Nanopartículas/química , Nanopartículas/metabolismo , Compuestos de Organoselenio/química , Compuestos de Organoselenio/metabolismo , Estrés Oxidativo , Compuestos de Selenio/análisis , Compuestos de Selenio/metabolismo
9.
Metallomics ; 11(1): 213-225, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30488926

RESUMEN

Here we report the coordination behaviour of an imidazole-based [S1]-donor ligand, 1,3-dimethyl-imidazole-2(3H)-thione (L1), and [S2]-donor ligand, 3,3'-methylenebis(1-methyl-imidazole-2(3H)-thione) (L2) or 4,4'-(3,3'-methylenebis-(2-thioxo-2,3-dihydro-imidazole-3,1-diyl))dibutanoic acid (L3), with HgX2 (X = Cl, Br or I) in solution and the solid state. NMR, UV-Vis spectroscopic, and single crystal X-ray studies demonstrated that L1 or L2 coordinated rapidly and reversibly to the mercury center of HgX2 through the thione moiety. Treatment of L2 with HgCl2 or HgBr2 afforded 16-membered metallacycle k1-(L2)2Hg2Cl4 or k1-(L2)2Hg2Br4 where two Cl or Br atoms are located inside the ring. In contrast, treatment of L2 with HgI2 afforded a chain-like structure of k1-[L2Hgl2]n, possibly due to the large size of the iodine atom. Interestingly, [S1] and [S2]-donor ligands (L1, L2, and L3) showed an excellent efficacy to protect liver cells against HgCl2 induced toxicity and the strength of their efficacy is in the order of L3 > L2 > L1. 30% decrease of ROS production was observed when liver cells were co-treated with HgCl2 and L1 in comparison to those cells treated with HgCl2 only. In contrast, 45% and 60% decrease of ROS production was observed in the case of cells co-treated with HgCl2 and thiones L2 and L3, respectively, indicating that [S2]-donor ligands L2 and L3 have better cytoprotective effects against oxidative stress induced by HgCl2 than [S1]-donor ligand L1. Water-soluble ligand L3 with N-(CH2)3CO2H substituents showed a better cytoprotective effect against HgCl2 toxicity than L2 in liver cells.


Asunto(s)
Citoprotección/efectos de los fármacos , Imidazoles/farmacología , Mercurio/toxicidad , Sustancias Protectoras/farmacología , Cristalografía por Rayos X , Células Hep G2 , Humanos , Imidazoles/química , Ligandos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Modelos Moleculares , Sustancias Protectoras/química
10.
Inorg Chem ; 56(20): 12102-12115, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28952723

RESUMEN

Here we report that [S2]-donor ligands BmmOH, BmmMe, and BmeMe bind rapidly and reversibly to the mercury centers of organomercurials, RHgX, and facilitate the cleavage of Hg-C bonds of RHgX to produce stable tetracoordinated Hg(II) complexes and R2Hg. Significantly, the rate of cleavage of Hg-C bonds depends critically on the X group of RHgX (X = BF4-, Cl-, I-) and the [S2]-donor ligands used to induce the Hg-C bonds. For instance, the initial rate of cleavage of the Hg-C bond of MeHgI induced by BmeMe is almost 2-fold higher than the initial rate obtained by BmmOH or BmmMe, indicating that the spacer between the two imidazole rings of [S2]-donor ligands plays a significant role here in the cleavage of Hg-C bonds. Surprisingly, we noticed that the initial rate of cleavage of the Hg-C bond of MeHgI induced by BmeMe (or BmmMe) is almost 10-fold and 100-fold faster than the cleavage of Hg-C bonds of MeHgCl and [MeHg]BF4 respectively, under identical reaction conditions, suggesting that the Hg-C bond of [MeHg]BF4 is highly inert at room temperature (21 °C). We also show here that the nature of the final stable cleaved products, i.e. Hg(II) complexes, depends on the X group of RHgX and the [S2]-donor ligands. For instance, the reaction of BmmMe with MeHgCl (1:1 molar ratio) afforded the formation of the 16-membered metallacyclic dinuclear mercury compound (BmmMe)2Hg2Cl4, in which the two Cl atoms are located inside the ring, whereas due to the large size of the I atom, a similar reaction with MeHgI yielded polymeric [(BmmMe)2HgI2]m·(MeHgI)n. However, the treatment of BmmMe with ionic [RHg]BF4 led to the formation of the tetrathione-coordinated mononuclear mercury compound [(BmmMe)2Hg](BF4)2, where BF4- serves as a counteranion.

11.
Chemistry ; 23(24): 5696-5707, 2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-28121053

RESUMEN

Organomercurials, such as methylmercury (MeHg+ ), are among the most toxic materials to humans. Apart from inhibiting proteins, MeHg+ exerts its cytotoxicity through strong binding with endogenous thiols cysteine (CysH) and glutathione (GSH) to form MeHgCys and MeHgSG complexes. Herein, it is reported that the N,N-disubstituted benzimidazole-based thione 1 containing a N-CH2 CH2 OH substituent converts MeHgCys and MeHgSG complexes to less toxic water-soluble HgS nanoparticles (NPs) and releases the corresponding free thiols CysH and GSH from MeHgCys and MeHgSG, respectively, in solution by unusual ligand-exchange reactions in phosphate buffer at 37 °C. However, the corresponding N-substituted benzimidazole-based thione 7 and N,N-disubstituted imidazole-based thione 3, in spite of containing a N-CH2 CH2 OH substituent, failed to convert MeHgX (X=Cys, and SG) to HgS NPs under identical reaction conditions, which suggests that not only the N-CH2 CH2 OH moiety but the benzimidazole ring and N,N-disubstitution in 1, which leads to the generation of a partial positive charge at the C2 atom of the benzimidazole ring in 1:1 MeHg-conjugated complex of 1, are crucial to convert MeHgX to HgS NPs under physiologically relevant conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...