Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 71(4): 464-480, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38959416

RESUMEN

Bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment are among the most common morbidities affecting preterm infants. Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently uncertain how BPD contributes to brain injury in preterm infants. Extracellular vesicles (EVs) are involved in interorgan communication in diverse pathological processes. ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) is pivotal in inflammasome assembly and activation of inflammatory response. We assessed expression profiles of the alveolar macrophage (AM) markers CD11b, CD11c, and CD206 as well as ASC in EVs isolated from the plasma of preterm infants at risk for BPD at 1 week of age. We found that infants on higher fraction of inspired oxygen therapy (HO2⩾30%) had increased concentrations of AM-derived EV-ASC compared with infants on lower fraction of inspired oxygen (LO2<30%). To assess the function of these EVs, we performed adoptive transfer experiments by injecting them into the circulation of newborn mice. We discovered that mice that received EVs from infants on HO2 had increased lung inflammation, decreased alveolarization, and disrupted vascular development, the hallmarks of BPD. Importantly, these EVs crossed the blood-brain barrier, and the EVs from infants on HO2 caused inflammation, reduced cell survival, and increased cell death, with features of pyroptosis and necroptosis in the hippocampus. These results highlight a novel role for AM-derived EV-ASC in mediating the lung-to-brain cross-talk that is critical in the pathogenesis of BPD and brain injury and identify potential novel targets for preventing and treating BPD and brain injury in preterm infants.


Asunto(s)
Lesiones Encefálicas , Proteínas Adaptadoras de Señalización CARD , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Animales , Humanos , Recién Nacido , Ratones , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Recien Nacido Prematuro , Femenino , Macrófagos Alveolares/metabolismo , Masculino , Encéfalo/metabolismo , Encéfalo/patología , Animales Recién Nacidos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Ratones Endogámicos C57BL
2.
J Neuroinflammation ; 20(1): 205, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679766

RESUMEN

BACKGROUND: Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found pharmacological inhibition of caspase-1, which blocks GSDMD activation, attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. METHODS: Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal days 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1) and CD68, markers of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. RESULTS: Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure did not increase AIF1 + , CD68 + , or TUNEL + cell numbers or decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air-exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, hypoxia-induced factor 1 pathway, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. CONCLUSIONS: GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.


Asunto(s)
Lesiones Encefálicas , Hiperoxia , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Técnicas de Inactivación de Genes , Hipocampo , Hiperoxia/complicaciones , Recien Nacido Prematuro , Ratones Noqueados , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros
3.
Res Sq ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398125

RESUMEN

Background: Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found inhibition of GSDMD activation attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. Methods: Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal day 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1), a marker of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. Results: Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure failed to increase either AIF1+ or TUNEL+ cell numbers, nor decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air- exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, and core development pathways hypoxia-induced factor 1, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. Conclusion: GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA