Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(25): 7601-7608, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870328

RESUMEN

Metallic ferromagnetic transition metal dichalcogenides have emerged as important building blocks for scalable magnetic and memory applications. Downscaling such systems to the ultrathin limit is critical to integrate them into technology. Here, we achieved layer-by-layer control over the transition metal dichalcogenide Cr1.6Te2 by using pulsed laser deposition, and we uncovered the minimum critical thickness above which room-temperature magnetic order is maintained. The electronic and magnetic structures are explored experimentally and theoretically, and it is shown that the films exhibit strong in-plane magnetic anisotropy as a consequence of large spin-orbit effects. Our study elucidates both magnetic and electronic properties of Cr1.6Te2 and corroborates the importance of intercalation to tune the magnetic properties of nanoscale materials' architectures.

2.
Nanoscale ; 16(25): 12237-12247, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38847457

RESUMEN

In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.

3.
Nature ; 626(8000): 752-758, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326617

RESUMEN

The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.

4.
Sci Rep ; 13(1): 3882, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890286

RESUMEN

We report on the growth and characterization of epitaxial YBa[Formula: see text]Cu[Formula: see text]O[Formula: see text] (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y[Formula: see text]Al[Formula: see text]O[Formula: see text] (Nd:YAG) pulsed laser source ([Formula: see text] = 1064  nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature [Formula: see text] 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d. These results clearly demonstrate the potential use of the first harmonic Nd:YAG laser source as an alternative to the excimer lasers for the PLD thin film community. Its compactness as well as the absence of any safety issues related to poisonous gas represent a major breakthrough in the deposition of complex multi-element compounds in form of thin films.

5.
Nano Lett ; 22(14): 5990-5996, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35787096

RESUMEN

Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal-insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal-insulator transition by implementing V2O3 thin films in devices.

6.
ACS Omega ; 7(17): 14571-14578, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557663

RESUMEN

The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1-x Sr x MnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.

7.
ACS Appl Mater Interfaces ; 13(46): 55666-55675, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34758616

RESUMEN

The properties of half-metallic manganite thin films depend on the composition and structure in the atomic scale, and consequently, their potential functional behavior can only be based on fine structure characterization. By combining advanced transmission electron microscopy, electron energy loss spectroscopy, density functional theory calculations, and multislice image simulations, we obtained evidence of a 7 nm-thick interface layer in La0.7Sr0.3MnO3 (LSMO) thin films, compatible with the formation of well-known dead layers in manganites, with an elongated out-of-plane lattice parameter and structural and electronic properties well distinguished from the bulk of the film. We observed, for the first time, a structural shift of Mn ions coupled with oxygen vacancies and a reduced Mn valence state within such layer. Understanding the correlation between oxygen vacancies, the Mn oxidation state, and Mn-ion displacements is a prerequisite to engineer the magnetotransport properties of LSMO thin films.

8.
ACS Appl Mater Interfaces ; 13(5): 6813-6819, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33497183

RESUMEN

Perovskite-based heterostructures have recently gained remarkable interest, thanks to atomic-scale precision engineering. These systems are very susceptible to small variations of control parameters, such as two-dimensionality, strain, lattice polarizability, and doping. Focusing on the rare-earth nickelate diagram, LaNiO3 (LNO) catches the eye, being the only nickelate that does not undergo a metal-to-insulator transition (MIT). Therefore, the ground state of LNO has been studied in several theoretical and experimental papers. Here, we show by means of infrared spectroscopy that an MIT can be driven by dimensionality control in ultrathin LNO films when the number of unit cells drops to 2. Such a dimensionality tuning can eventually be tailored when a physically implemented monolayer in the ultrathin films is replaced by a digital single layer embedded in the Ruddlesden-Popper Lan+1NinO3n+1 series. We provide spectroscopic evidence that the dimensionality-induced MIT in Ruddlesden-Popper nickelates strongly resembles that of ultrathin LNO films. Our results can pave the way to the employment of Ruddlesden-Popper Lan+1NinO3n+1 to tune the electronic properties of LNO through dimensional transition without the need of physically changing the number of unit cells in thin films.

9.
Nano Lett ; 20(9): 6444-6451, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794711

RESUMEN

Oxygen vacancies are known to play a crucial role in tuning the physical properties and technological applications of titanium dioxide TiO2. Over the last decades, defects in substoichiometric TiO2 have been commonly associated with the formation of TinO2n-x Magnéli phases, which are extended planar defects originating from crystallographic shear planes. By combining advanced transmission electron microscopy techniques, electron energy-loss spectroscopy and atomistic simulations, we reach new understanding of the oxygen vacancy induced structural modulations in anatase, ruling out the earlier shear-plane model. Structural modulations are instead shown to be due to the formation of oxygen vacancy superstructures that extend periodically inside the films, preserving the crystalline order of anatase. Elucidating the structure of oxygen defects in anatase is a crucial step for improving the functionalities of such material system and to engineer devices with targeted properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA