Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35815945

RESUMEN

Immunometabolic reprogramming due to adenosine produced by CD73 (encoded by the 5'-ectonucleotidase gene NT5E) is a recognized immunosuppressive mechanism contributing to immune evasion in solid tumors. Adenosine is not only known to contribute to tumor progression, but it has specific roles in driving dysfunction of immune cells, including natural killer (NK) cells. Here, we engineered human NK cells to directly target the CD73-adenosine axis by blocking the enzymatic activity of CD73. In doing so, the engineered NK cells not only impaired adenosinergic metabolism driven by the hypoxic uptake of ATP by cancer cells in a model of non-small-cell lung cancer, but also mediated killing of tumor cells due to the specific recognition of overexpressed CD73. This resulted in a 'single agent' immunotherapy that combines antibody specificity, blockade of purinergic signaling, and killing of targets mediated by NK cells. We also showed that CD73-targeted NK cells are potent in vivo and result in tumor arrest, while promoting NK cell infiltration into CD73+ tumors and enhancing intratumoral activation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenosina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Inmunoterapia/métodos , Células Asesinas Naturales , Neoplasias Pulmonares/metabolismo
2.
Cancer Immunol Immunother ; 71(12): 3043-3056, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35622118

RESUMEN

The production of adenosine by CD73 on cancer cells in the tumor microenvironment is a recognized immunosuppressive mechanism contributing to immune evasion in many solid tumors. While NK cells have been purported to overexpress CD73 under certain conditions, this phenomenon has remained elusive and unclear. We have found that while NK cells are able to upregulate expression of CD73 on their surface when exposed to CD73+ cancer cells, this upregulation is not universal, nor is it often substantial. Rather, our data point to the extent of CD73 expression on NK cells to be both cancer-specific and environmentally-driven, and largely limited in intensity. We found that NK cell overexpression of CD73 responds to the level of CD73 on cancer cells and is enhanced in hypoxia. Interestingly, human CD73+ NK cells appear hyperfunctional in vitro compared to CD73- NK cells, suggesting that CD73 expression could be a bystander of NK cell activation. In addition, glioblastoma patient data show that tumor-infiltrating NK cells express CD73 variably, depending on donor, and present lower expression of CD16, alongside patient-specific changes in CEACAM1, CXCR3 and TIM-3, suggesting some functional changes in NK cell responses associated with expression of CD73 on NK cells in vivo. Taken together, our study is the first to show that while NK cells are largely resistant to the upregulation of CD73, CD73 expression is inducible on NK cells in response to CD73 on cancer cells, and these cells are associated with distinct functional signatures.


Asunto(s)
Glioblastoma , Células Asesinas Naturales , Humanos , Adenosina/metabolismo , Glioblastoma/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Células Asesinas Naturales/metabolismo , Microambiente Tumoral
3.
Cytotherapy ; 23(10): 939-952, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34272175

RESUMEN

BACKGROUND AIMS: Traditionally, natural killer (NK) cells are sourced from the peripheral blood of donors-a laborious and highly donor-specific process. Processes for generating NK cells from induced pluripotent stem cells (iPSCs) have demonstrated that it is possible to successfully generate renewable alloreactive NK cells that are not only functional in vivo but can also be genetically engineered for enhanced function. However, poor standardization and cumbersome differentiation procedures suggest that further improvements in the control of the differentiation process are necessary. METHODS: Here the authors evaluated the potential of differentiating NK cells from centrally authenticated iPSCs under entirely chemically defined and serum-free conditions as well as their immunotherapeutic potential, after expansion in feeder-free media, against solid tumors targets. To address limitations of current differentiation approaches, the authors did not utilize feeder or stromal cell layers, TrypLE adaptation or peripheral blood during the differentiation process. The authors also evaluated the feasibility of utilizing centrally authenticated iPSC lines, thus circumventing protocol- and donor-induced variability associated with reprogramming approaches, and characterized these iPSC-NK cells in terms of cytotoxicity, cytokine production and degranulation potential against solid tumor cell lines and patient-derived targets. RESULTS: Differentiation of iPSCs generated NK cells that were predominantly CD56+/CD16+/CD3- and expressed NK activation markers NKG2D, NKp30, NKp44, NKp46 and DNAM-1. These iPSC-NK cells mediated effector functions, including cytotoxicity, degranulation and IFN-γ production, in response to solid tumor targets, including patient-derived cancer cells, and could be cryopreserved and expanded in culture. CONCLUSIONS: The ability to produce NK cells under defined conditions and the functional responses elicited by these iPSC-NK cells suggest that they could represent promising effectors in clinical adoptive transfer settings as a renewable source of donor-independent NK cells for immunotherapy of solid tumors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Línea Celular Tumoral , Humanos , Inmunoterapia , Células Asesinas Naturales
4.
Front Mol Biosci ; 6: 60, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396523

RESUMEN

NK cell infiltration into solid tumors is often low and is largely represented by the poorly-cytotoxic CD56bright subset. Numerous studies have demonstrated that CD73, overexpressed under conditions of hypoxia, is involved in a variety of physiological processes, while its overexpression has been correlated with tumor invasiveness, metastasis and poorer patient survival in many cancers. Hypoxia itself favors aggressive glycolytic fueling of cancer cells, in turn driving reprogramming of NK cell metabolism. In addition, the hypoxia-driven activity of CD73 immunometabolically impairs NK cells in tumors, due to its catalytic role in the generation of the highly immunosuppressive metabolite adenosine. Adenosinergic signaling was shown to alter NK cell metabolic programs, leading to tumor-promoting environments characterized by NK cell dysfunction. Despite the demonstrated role of NK cell responses in the context of CD73 targeting, the engagement of NK cells in the setting of hypoxia/CD73 signaling has not been extensively studied or exploited. Here, we discuss available evidence on the role of hypoxic signaling on CD73-mediated activity, and how this relates to the immunometabolic responses of NK cells, with a particular focus on the therapeutic targeting of these pathways.

5.
J Immunother Cancer ; 6(1): 136, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514403

RESUMEN

BACKGROUND: The anti-tumor immunity of natural killer (NK) cells can be paralyzed by the CD73-induced generation of immunosuppressive adenosine from precursor ATP within the hypoxic microenvironment of solid tumors. In an effort to redirect purinergic immunosuppression of NK cell anti-tumor function, we showed, for the first time, that immunometabolic combination treatment with NKG2D-engineered CAR-NK cells alongside blockade of CD73 ectonucleotidase activity can result in significant anti-tumor responses in vivo. METHODS: NK cells were engineered non-virally with NKG2D.CAR-presenting vectors based on the piggyBac transposon system with DAP10 and CD3ζ co-signaling domains. The anti-tumor immunity of NKG2D.CAR.NK cells in combination with CD73 targeting was evaluated against multiple solid tumor targets in vitro and humanized mouse xenografts in immunodeficient tumor-bearing mice in vivo. Intratumoral migration was evaluated via immunohistochemical staining, while degranulation capacity and IFN-γ production of NK cells were measured in response to solid tumor targets. RESULTS: Our results showed that CD73 blockade can mediate effective purinergic reprogramming and enhance anti-tumor cytotoxicity both in vitro and in vivo by enhancing the killing ability of CAR-engineered NK cells against CD73+ solid tumor targets via mechanisms that might imply alleviation from adenosinergic immunometabolic suppression. CD73 blockade improved the intratumoral homing of CD56+ CAR-NK cells in vivo. These engineered NK cells showed synergistic therapeutic efficacy in combination with CD73 targeting against CD73+ human lung cancer xenograft models. Interestingly, CD73 blockade could inhibit tumor growth in vivo independently of adaptive immune cells, innate immunity or NK cell-mediated ADCC. CONCLUSIONS: Immunotherapies targeting the adenosinergic signaling cascade, which act by neutralizing CD73 ectoenzymatic activity, had thus far not been evaluated in humanized tumor models, nor had the implication of innate immunity been investigated. Taken together, our pre-clinical efficacy data demonstrate, for the first time, the potential of targeting CD73 to modulate purinergic signaling and enhance adoptive NK cell immunotherapy via mechanisms that could implicate autocrine tumor control as well as by mediating adenosinergic signaling.


Asunto(s)
5'-Nucleotidasa/inmunología , Vectores Genéticos , Inmunoterapia , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/metabolismo , 5'-Nucleotidasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Orden Génico , Técnicas de Transferencia de Gen , Ingeniería Genética , Vectores Genéticos/genética , Humanos , Inmunoterapia/métodos , Masculino , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Front Immunol ; 9: 2533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425720

RESUMEN

Adenosine is a potent immunosuppressive purine metabolite contributing to the pathogenesis of solid tumors. Extracellular adenosine signals on tumor-infiltrating NK cells to inhibit their proliferation, maturation, and cytotoxic function. Cytokine priming imparts upon NK cells distinct activation statuses, which modulate NK anti-tumor immunity and responses to purinergic metabolism. Here, for the first time, we investigated human NK cell responses to adenosinergic signaling in the context of distinct cytokine priming programs. NK cells were shown to be hyper-responsive to adenosine when primed with IL-12 and IL-15 compared to IL-2, exhibiting enhanced IFN-γ expression from CD56bright and CD56dim subsets while modulating the expression of activation marker NKG2D. These responses resulted in signaling that was dependent on mTOR. Adenosine induced upregulation of transcriptional signatures for genes involved in immune responses while downregulating cellular metabolism and other protein synthesis functions that correlate to inhibited oxidative phosphorylation and glycolysis. Overall, our findings show that adenosine acts on specific cellular pathways rather than inducing a broad inhibition of NK cell functions. These responses are dependent on cytokine priming signatures and are important in designing therapeutic interventions that can reprogram NK cell immunometabolism for improved immunotherapies of solid tumors.


Asunto(s)
Adenosina/metabolismo , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Antígeno CD56/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Citotoxicidad Inmunológica , Humanos , Activación de Linfocitos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/inmunología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
7.
Front Immunol ; 9: 2517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30467503

RESUMEN

Energy metabolism is key to the promotion of tumor growth, development, and metastasis. At the same time, cellular metabolism also mediates immune cell survival, proliferation and cytotoxic responses within the tumor microenvironment. The ability of natural killer cells to eradicate tumors relies on their ability to functionally persist for the duration of their anti-tumor effector activity. However, a tumor's altered metabolic requirements lead to compromised functional responses of cytokine-activated natural killer cells, which result in decreased effectiveness of adoptive cell-based immunotherapies. Tumors exert these immunosuppressive effects through a number of mechanisms, a key driver of which is hypoxia. Hypoxia also fuels the generation of adenosine from the cancer-associated ectoenzymes CD39 and CD73. Adenosine's immunosuppression manifests in decreased proliferation and impaired anti-tumor function, with adenosinergic signaling emerging as an immunometabolic checkpoint blockade target. Understanding such immunometabolic suppression is critical in directing the engineering of a new generation of natural killer cell-based immunotherapies that have the ability to more effectively target difficult-to-treat solid tumors.


Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos , Terapia de Inmunosupresión/métodos , Inmunoterapia/métodos , Neoplasias/terapia , Transducción de Señal/inmunología
8.
Pharmaceuticals (Basel) ; 10(2)2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28353658

RESUMEN

Endothelial cell (EC) dysfunction is associated with many disease states including deep vein thrombosis (DVT), chronic kidney disease, sepsis and diabetes. Loss of the glycocalyx, a thin glycosaminoglycan (GAG)-rich layer on the EC surface, is a key feature of endothelial dysfunction and increases exposure of EC adhesion molecules such as selectins, which are involved in platelet binding to ECs. Once bound, platelets cause thrombus formation and an increased inflammatory response. We have developed a GAG derived, selectin targeting anti-adhesive coating (termed EC-SEAL) consisting of a dermatan sulfate backbone and multiple selectin-binding peptides designed to bind to inflamed endothelium and prevent platelet binding to create a more quiescent endothelial state. Multiple EC-SEAL variants were evaluated and the lead variant was found to preferentially bind to selectin-expressing ECs and smooth muscle cells (SMCs) and inhibit platelet binding and activation in a dose-dependent manner. In an in vivo model of DVT, treatment with the lead variant resulted in reduced thrombus formation. These results indicate that EC-SEAL has promise as a potential therapeutic in the treatment of endothelial dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...