Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Theranostics ; 13(15): 5435-5451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908733

RESUMEN

Doxorubicin (Dox) is an effective anticancer molecule, but its clinical efficacy is limited by strong cardiotoxic side effects. Lysosomal dysfunction has recently been proposed as a new mechanism of Dox-induced cardiomyopathy. However, to date, there is a paucity of therapeutic approaches capable of restoring lysosomal acidification and function in the heart. Methods: We designed novel poly(lactic-co-glycolic acid) (PLGA)-grafted silica nanoparticles (NPs) and investigated their therapeutic potential in the primary prevention of Dox cardiotoxicity in cardiomyocytes and mice. Results: We showed that NPs-PLGA internalized rapidly in cardiomyocytes and accumulated inside the lysosomes. Mechanistically, NPs-PLGA restored lysosomal acidification in the presence of doxorubicin or bafilomycin A1, thereby improving lysosomal function and autophagic flux. Importantly, NPs-PLGA mitigated Dox-related mitochondrial dysfunction and oxidative stress, two main mechanisms of cardiotoxicity. In vivo, inhalation of NPs-PLGA led to effective and rapid targeting of the myocardium, which prevented Dox-induced adverse remodeling and cardiac dysfunction in mice. Conclusion: Our findings demonstrate a pivotal role for lysosomal dysfunction in Dox-induced cardiomyopathy and highlight for the first time that pulmonary-driven NPs-PLGA administration is a promising strategy against anthracycline cardiotoxicity.


Asunto(s)
Cardiomiopatías , Nanopartículas , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Miocitos Cardíacos/metabolismo , Cardiomiopatías/metabolismo , Estrés Oxidativo , Lisosomas/metabolismo
3.
Dis Model Mech ; 16(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497665

RESUMEN

Dominant optic atrophy is an optic neuropathy with varying clinical symptoms and progression. A severe disorder is associated with certain OPA1 mutations and includes additional symptoms for >20% of patients. This underscores the consequences of OPA1 mutations in different cellular populations, not only retinal ganglionic cells. We assessed the effects of OPA1 loss of function on oxidative metabolism and antioxidant defences using an RNA-silencing strategy in a human epithelial cell line. We observed a decrease in the mitochondrial respiratory chain complexes, associated with a reduction in aconitase activity related to an increase in reactive oxygen species (ROS) production. In response, the NRF2 (also known as NFE2L2) transcription factor was translocated into the nucleus and upregulated SOD1 and GSTP1. This study highlights the effects of OPA1 deficiency on oxidative metabolism in replicative cells, as already shown in neurons. It underlines a translational process to use cycling cells to circumvent and describe oxidative metabolism. Moreover, it paves the way to predict the evolution of dominant optic atrophy using mathematical models that consider mitochondrial ROS production and their detoxifying pathways.


Asunto(s)
Atrofia Óptica Autosómica Dominante , Humanos , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Respiración de la Célula , Estrés Oxidativo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
5.
Front Psychiatry ; 12: 762967, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058813

RESUMEN

Background: Limited success of previous clinical trials for Fragile X syndrome (FXS) has led researchers to consider combining different drugs to correct the pleiotropic consequences caused by the absence of the Fragile X mental retardation protein (FMRP). Here, we report the results of the LovaMiX clinical trial, the first trial for FXS combining two disease-modifying drugs, lovastatin, and minocycline, which have both shown positive effects when used independently. Aim: The main goals of the study were to assess the safety and efficacy of a treatment combining lovastatin and minocycline for patients with FXS. Design: Pilot Phase II open-label clinical trial. Patients with a molecular diagnostic of FXS were first randomized to receive, in two-step titration either lovastatin or minocycline for 8 weeks, followed by dual treatment with lovastatin 40 mg and minocycline 100 mg for 2 weeks. Clinical assessments were performed at the beginning, after 8 weeks of monotherapy, and at week 20 (12 weeks of combined therapy). Outcome Measures: The primary outcome measure was the Aberrant Behavior Checklist-Community (ABC-C) global score. Secondary outcome measures included subscales of the FXS specific ABC-C (ABC-CFX), the Anxiety, Depression, and Mood Scale (ADAMS), the Social Responsiveness Scale (SRS), the Behavior Rating Inventory of Executive Functions (BRIEF), and the Vineland Adaptive Behavior Scale second edition (VABS-II). Results: Twenty-one individuals out of 22 completed the trial. There were no serious adverse events related to the use of either drugs alone or in combination, suggesting good tolerability and safety profile of the combined therapy. Significant improvement was noted on the primary outcome measure with a 40% decrease on ABC-C global score with the combined therapy. Several outcome measures also showed significance. Conclusion: The combination of lovastatin and minocycline is safe in patients for FXS individuals and appears to improve several elements of the behavior. These results set the stage for a larger, placebo-controlled double-blind clinical trial to confirm the beneficial effects of the combined therapy.

6.
Transl Psychiatry ; 9(1): 312, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748507

RESUMEN

Fragile-X syndrome (FXS) is characterized by neurological and psychiatric problems symptomatic of cortical hyperexcitability. Recent animal studies identified deficient γ-aminobutyricacid (GABA) inhibition as a key mechanism for hyperexcitability in FXS, but the GABA system remains largely unexplored in humans with the disorder. The primary objective of this study was to assess GABA-mediated inhibition and its relationship with hyperexcitability in patients with FXS. Transcranial magnetic stimulation (TMS) was used to assess cortical and corticospinal inhibitory and excitatory mechanisms in 18 patients with a molecular diagnosis of FXS and 18 healthy controls. GABA-mediated inhibition was measured with short-interval intracortical inhibition (GABAA), long-interval intracortical inhibition (GABAB), and the corticospinal silent period (GABAA+B). Net intracortical facilitation involving glutamate was assessed with intracortical facilitation, and corticospinal excitability was measured with the resting motor threshold. Results showed that FXS patients had significantly reduced short-interval intracortical inhibition, increased long-interval intracortical inhibition, and increased intracortical facilitation compared to healthy controls. In the FXS group, reduced short-interval intracortical inhibition was associated with heightened intracortical facilitation. Taken together, these results suggest that reduced GABAA inhibition is a plausible mechanism underlying cortical hyperexcitability in patients with FXS. These findings closely match those observed in animal models, supporting the translational validity of these markers for clinical research.


Asunto(s)
Síndrome del Cromosoma X Frágil/fisiopatología , Corteza Motora/fisiopatología , Red Nerviosa/fisiopatología , Inhibición Neural , Adolescente , Adulto , Estudios de Casos y Controles , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico , Humanos , Masculino , Estimulación Magnética Transcraneal , Adulto Joven , Ácido gamma-Aminobutírico/fisiología
7.
Sci Rep ; 9(1): 4531, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872605

RESUMEN

Mitochondria can utilize different fuels according to physiological and nutritional conditions to promote cellular homeostasis. However, during nutrient overload metabolic inflexibility can occur, resulting in mitochondrial dysfunctions. High-fat diets (HFDs) are usually used to mimic this metabolic inflexibility in different animal models. However, how mitochondria respond to the duration of a HFD exposure is still under debate. In this study, we investigated the dynamic of the mitochondrial and physiological functions in Drosophila melanogaster at several time points following an exposure to a HFD. Our results showed that after two days on the HFD, mitochondrial respiration as well as ATP content of thorax muscles are increased, likely due to the utilization of carbohydrates. However, after four days on the HFD, impairment of mitochondrial respiration at the level of complex I, as well as decreased ATP content were observed. This was associated with an increased contribution of complex II and, most notably of the mitochondrial glycerol-3-phosphate dehydrogenase (mG3PDH) to mitochondrial respiration. We suggest that this increased mG3PDH capacity reflects the occurrence of metabolic inflexibility, leading to a loss of homeostasis and alteration of the cellular redox status, which results in senescence characterized by decreased climbing ability and premature death.


Asunto(s)
Dieta Alta en Grasa , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dieta Alta en Grasa/veterinaria , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Complejo I de Transporte de Electrón/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Longevidad , Masculino , Músculos/metabolismo , Fosforilación Oxidativa , Frecuencia Respiratoria
8.
Mar Drugs ; 16(11)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453574

RESUMEN

During the last decade, essential polyunsaturated fatty acids (PUFAs) such as eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine sources have been investigated as nonpharmacological dietary supplements to improve different pathological conditions, as well as aging. The aim of this study was to determine the effects of dietary n-3 PUFA monoacylglycerides (MAG, both EPA and DHA) on the mitochondrial metabolism and oxidative stress of a short-lifespan model, Drosophila melanogaster, sampled at five different ages. Our results showed that diets supplemented with MAG-EPA and MAG-DHA increased median lifespan by 14.6% and decreased mitochondrial proton leak resulting in an increase of mitochondrial coupling. The flies fed on MAG-EPA also had higher electron transport system capacity and mitochondrial oxidative capacities. Moreover, both n-3 PUFAs delayed the occurrence of lipid peroxidation but only flies fed the MAG-EPA diet showed maintenance of superoxide dismutase activity during aging. Our study therefore highlights the potential of n-3 PUFA monoacylglycerides as nutraceutical compounds to delay the onset of senescence by acting directly or indirectly on the mitochondrial metabolism and suggests that Drosophila could be a relevant model for the study of the fundamental mechanisms linking the effects of n-3 PUFAs to aging.


Asunto(s)
Suplementos Dietéticos , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Monoglicéridos/farmacología , Animales , Drosophila melanogaster , Peroxidación de Lípido/efectos de los fármacos , Masculino , Mitocondrias/metabolismo , Modelos Animales , Estrés Oxidativo/efectos de los fármacos
9.
PLoS One ; 11(2): e0150230, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925951

RESUMEN

It is increasingly clear that nicotinic acetylcholine receptors (nAChRs) are involved in immune regulation, and that their activation can protect against inflammatory diseases. Previous data have shown that nicotine diminishes the numbers of peripheral monocytes and macrophages, especially those of the pro-inflammatory phenotype. The goal of the present study was to determine if nicotine modulates the production of bone marrow -derived monocytes/macrophages. In this study, we first found that murine bone marrow cells express multiple nAChR subunits, and that the α7 and α9 nAChRs most predominant subtypes found in immune cells and their precursors. Using primary cultures of murine bone marrow cells, we then determined the effect of nicotine on monocyte colony-stimulating factor and interferon gamma (IFNγ)-induced monocyte production. We found that nicotine lowered the overall number of monocytes, and more specifically, inhibited the IFNγ-induced increase in pro-inflammatory monocytes by reducing cell proliferation and viability. These data suggested that nicotine diminishes the ratio of pro-inflammatory versus anti-inflammatory monocyte produced in the bone marrow. We thus confirmed this hypothesis by measuring cytokine expression, where we found that nicotine inhibited the production of the pro-inflammatory cytokines TNFα, IL-1ß and IL-12, while stimulating the secretion of IL-10, an anti-inflammatory cytokine. Finally, nicotine also reduced the number of pro-inflammatory monocytes in the bone marrow of LPS-challenged mice. Overall, our data demonstrate that both α7 and α9 nAChRs are involved in the regulation of pro-inflammatory M1 monocyte numbers.


Asunto(s)
Monocitos/citología , Monocitos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factores Estimulantes de Colonias/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inmunología , Inflamación/metabolismo , Interferón gamma/farmacología , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Nicotina/farmacología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...