Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602028

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Distrofina , Ratones Endogámicos BALB C , Músculo Esquelético , Distrofia Muscular de Duchenne , Animales , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/genética , Distrofina/metabolismo , Distrofina/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Ratones Endogámicos mdx , Ratones , Exones/genética , Masculino , Fibrosis , Fenotipo
2.
J Appl Physiol (1985) ; 135(1): 77-87, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262103

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by mutations or deletions in the dystrophin gene, for which there remains no cure. As DMD patients also develop bone fragility because of muscle weakness and immobilization, better understanding of the pathophysiological mechanisms of dystrophin deficiency will help develop therapies to improve musculoskeletal health. Since alterations in muscle phenotype can influence bone structure, we investigated whether modifying muscle contractile activity through low-frequency stimulation (LFS) could alter bone architecture in mouse models of DMD. We tested the hypothesis that increasing muscle contractile activity could influence bone mass and structure in dystrophin-deficient (mdx) and dystrophin- and utrophin-deficient (dko) dystrophic mice. Tibial bone structure in dko mice was significantly different from that in mdx and wild-type (C57BL/10) control mice. Effects of LFS on bone architecture differed between dystrophic and healthy mice, with LFS thinning cortical bone in both dystrophic models. Bone mass was maintained in LFS-treated healthy mice, with a reduced proportion of high-density bone and concomitant increase in low-density bone. LFS-treated dko mice exhibited a net deficit in cortical thickness and reduced high-density bone but no equivalent increase in low-density bone. These alterations in bone structure and mineral density reduced mechanical strength in mdx and dko mice. The findings reveal that muscle activity can regulate bone mass, structure, mineral accrual, and strength, especially in the context of dystrophin and/or utrophin deficiency. The results provide unique insights into the development of bone fragility in DMD and for devising interventions to improve musculoskeletal health.NEW & NOTEWORTHY Patients with Duchenne muscular dystrophy (DMD) develop bone fragility because of muscle weakness and immobilization. We investigated whether increasing muscle contractile activity through low-frequency stimulation (LFS) could alter bone architecture in dystrophin-deficient (mdx) or dystrophin- and utrophin-deficient (dko) mouse models of DMD. Chronic LFS reduced tibial diaphysis cross sections in mdx and dko mice, without affecting bone shape in healthy mice. LFS affected the distribution of bone mineral density across all phenotypes, with the magnitude of effect being dependent on disease severity.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Ratones , Ratones Endogámicos mdx , Utrofina/genética , Ratones Endogámicos C57BL , Músculo Esquelético , Debilidad Muscular , Modelos Animales de Enfermedad
3.
Nutrients ; 13(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34960110

RESUMEN

Gastrointestinal (GI) dysfunction is an important, yet understudied condition associated with Duchenne muscular dystrophy (DMD), with patients reporting bloating, diarrhea, and general discomfort, contributing to a reduced quality of life. In the mdx mouse, the most commonly used mouse model of DMD, studies have confirmed GI dysfunction (reported as altered contractility and GI transit through the small and large intestine), associated with increased local and systemic inflammation. Sulforaphane (SFN) is a natural isothiocyanate with anti-inflammatory and anti-oxidative properties via its activation of Nrf2 signalling that has been shown to improve aspects of the skeletal muscle pathology in dystrophic mice. Whether SFN can similarly improve GI function in muscular dystrophy was unknown. Video imaging and spatiotemporal mapping to assess gastrointestinal contractions in isolated colon preparations from mdx and C57BL/10 mice revealed that SFN reduced contraction frequency when administered ex vivo, demonstrating its therapeutic potential to improve GI function in DMD. To confirm this in vivo, four-week-old male C57BL/10 and mdx mice received vehicle (2% DMSO/corn oil) or SFN (2 mg/kg in 2% DMSO/corn oil) via daily oral gavage five days/week for 4 weeks. SFN administration reduced fibrosis in the diaphragm of mdx mice but did not affect other pathological markers. Gene and protein analysis revealed no change in Nrf2 protein expression or activation of Nrf2 signalling after SFN administration and oral SFN supplementation did not improve GI function in mdx mice. Although ex vivo studies demonstrate SFN's therapeutic potential for reducing colon contractions, in vivo studies should investigate higher doses and/or alternate routes of administration to confirm SFN's potential to improve GI function in DMD.


Asunto(s)
Enfermedades Gastrointestinales/tratamiento farmacológico , Isotiocianatos/farmacología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Sulfóxidos/farmacología , Animales , Antiinflamatorios/farmacología , Colon/patología , Diafragma/patología , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Enfermedades Gastrointestinales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
4.
Am J Physiol Cell Physiol ; 321(2): C288-C296, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191629

RESUMEN

Impaired oxidative capacity and mitochondrial function contribute to the dystrophic pathology in muscles of patients with Duchenne muscular dystrophy (DMD) and in relevant mouse models of the disease. Emerging evidence suggests an association between disrupted core clock expression and mitochondrial quality control, but this has not been established in muscles lacking dystrophin. We examined the diurnal regulation of muscle core clock and mitochondrial quality control expression in dystrophin-deficient C57BL/10ScSn-Dmdmdx (mdx) mice, an established model of DMD. Male C57BL/10 (BL/10; n = 18) and mdx mice (n = 18) were examined every 4 h beginning at the dark cycle. Throughout the entire light-dark cycle, extensor digitorum longus (EDL) muscles from mdx mice had decreased core clock mRNA expression (Arntl, Cry1, Cry2, Nr1d2; P < 0.05) and disrupted mitochondrial quality control mRNA expression related to biogenesis (decreased; Ppargc1a, Esrra; P < 0.05), fission (increased; Dnm1l; P < 0.01), fusion (decreased; Opa1, Mfn1; P < 0.05), and autophagy/mitophagy (decreased: Bnip3; P < 0.05; increased: Becn1; P < 0.05). Cosinor analysis revealed a decrease in the rhythmicity parameters mesor and amplitude for Arntl, Cry1, Cry2, Per2, and Nr1d1 (P < 0.001) in mdx mice. Diurnal oscillations in Esrra, Sirt1, Map1lc3b, and Sqstm1 were absent in mdx mice, along with decreased mesor and amplitude of Ppargc1a mRNA expression (P < 0.01). The expression of proteins involved in mitochondrial biogenesis (decreased: PPARGC1A, P < 0.05) and autophagy/mitophagy (increased: MAP1LC3BII, SQSTM1, BNIP3; P < 0.05) were also dysregulated in tibialis anterior muscles of mdx mice. These findings suggest that dystrophin deficiency in mdx mice impairs the regulation of the core clock and mitochondrial quality control, with relevance to DMD and related disorders.


Asunto(s)
Distrofina/deficiencia , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/metabolismo , Utrofina/deficiencia
5.
JBMR Plus ; 5(4): e10477, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33869993

RESUMEN

The development of the musculoskeletal system and its maintenance depends on the reciprocal relationship between muscle and bone. The size of skeletal muscles and the forces generated during muscle contraction are potent sources of mechanical stress on the developing skeleton, and they shape bone structure during growth. This is particularly evident in hypermuscular global myostatin (Mstn)-null mice, where larger muscles during development increase bone mass and alter bone shape. However, whether muscle hypertrophy can similarly influence the shape of bones after the embryonic and prepubertal period is unknown. To address this issue, bone structure was assessed after inducing muscle hypertrophy in the lower hindlimbs of young-adult C57BL/6J male mice by administering intramuscular injections of recombinant adeno-associated viral vectors expressing follistatin (FST), a potent antagonist of Mstn. Two FST isoforms were used: the full-length 315 amino acid isoform (FST-315) and a truncated 288 amino acid isoform (FST-288). In both FST-treated cohorts, muscle hypertrophy was observed, and the anterior crest of the tibia, adjacent to the tibialis anterior muscle, was lengthened. Hypertrophy of the muscles surrounding the tibia caused the adjacent cortical shell to recede inward toward the central axis: an event driven by bone resorption adjacent to the hypertrophic muscle. The findings reveal that inducing muscle hypertrophy in mice can confer changes in bone shape in early adulthood. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Bio Protoc ; 11(1): e3873, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33732762

RESUMEN

Bone strength is controlled by both bone mass, and the organization and quality of the bone material. The current standard method for measuring bone mass in mouse and rat studies is micro-computed tomography. This method typically uses a single threshold to identify bone material in the cortical and trabecular regions. However, this single threshold method obscures information about the mineral content of the bone material and depends on normal morphology to separately analyze cortical and trabecular structures. To extend this method to identify bone mass at multiple density levels, we have established a protocol for unbiased selection and application of multiple thresholds using a standard laboratory-based micro-computed tomography instrument. This non-invasive method can be applied to longitudinal studies and archived samples and provides additional information about bone structure and strength.

7.
Biochem Pharmacol ; 169: 113627, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31476292

RESUMEN

Parathyroid hormone (PTH)-related protein (PTHrP) (gene name Pthlh) was discovered as the factor responsible for the humoral hypercalcemia of malignancy. It shares such sequence similarity with PTH in the amino-terminal region that the two are equally able to act through a single G protein-coupled receptor, PTH1R. A number of biological activities are ascribed to domains of PTHrP beyond the amino-terminal domain. PTH functions as a circulating hormone, but PTHrP is generated locally in many tissues including bone, where it acts as a paracrine factor on osteoblasts and osteocytes. The present study compares how PTH and PTHrP influence cyclic AMP (cAMP) formation through adenylyl cyclase, the first event in cell activation through PTH1R. Brief exposure to full length PTHrP(1-141) in several osteoblastic cell culture systems was followed by sustained adenylyl cyclase activity for more than an hour after ligand washout. This effect was dose-dependent and was not found with shorter PTHrP or PTH peptides even though they were fully able to activate adenylyl cyclase with acute treatment. The persistent activation response to PTHrP(1-141) was seen also with later events in the cAMP/PKA pathway, including persistent activation of CRE-luciferase and sustained regulation of several CREB-responsive mRNAs, up to 24 h after the initial exposure. Pharmacologic blockade of endocytosis prevented the persistent activation of cAMP and gene responses. We conclude that full length PTHrP, the likely local physiological effector in bone, differs in intracellular action to PTH by undergoing endosomal translocation to induce a prolonged adenylyl cyclase activation in its target cells.


Asunto(s)
AMP Cíclico/biosíntesis , Endocitosis/fisiología , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Fragmentos de Péptidos/farmacología , Adenilil Ciclasas/metabolismo , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Ratones , Ratones Endogámicos C57BL , Hormona Paratiroidea/farmacología , Receptor de Hormona Paratiroídea Tipo 1/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-29867773

RESUMEN

Parathyroid hormone-related protein (PTHrP) expression in breast cancer is enriched in bone metastases compared to primary tumors. Human MCF7 breast cancer cells "home" to the bones of immune deficient mice following intracardiac inoculation, but do not grow well and stain negatively for Ki67, thus serving as a model of breast cancer dormancy in vivo. We have previously shown that PTHrP overexpression in MCF7 cells overcomes this dormant phenotype, causing them to grow as osteolytic deposits, and that PTHrP-overexpressing MCF7 cells showed significantly lower expression of genes associated with dormancy compared to vector controls. Since early work showed a lack of cyclic AMP (cAMP) response to parathyroid hormone (PTH) in MCF7 cells, and cAMP is activated by PTH/PTHrP receptor (PTHR1) signaling, we hypothesized that the effects of PTHrP on dormancy in MCF7 cells occur through non-canonical (i.e., PTHR1/cAMP-independent) signaling. The data presented here demonstrate the lack of cAMP response in MCF7 cells to full length PTHrP(1-141) and PTH(1-34) in a wide range of doses, while maintaining a response to three known activators of adenylyl cyclase: calcitonin, prostaglandin E2 (PGE2), and forskolin. PTHR1 mRNA was detectable in MCF7 cells and was found in eight other human breast and murine mammary carcinoma cell lines. Although PTHrP overexpression in MCF7 cells changed expression levels of many genes, RNAseq analysis revealed that PTHR1 was unaltered, and only 2/32 previous PTHR1/cAMP responsive genes were significantly upregulated. Instead, PTHrP overexpression in MCF7 cells resulted in significant enrichment of the calcium signaling pathway. We conclude that PTHR1 in MCF7 breast cancer cells is not functionally linked to activation of the cAMP pathway. Gene expression responses to PTHrP overexpression must, therefore, result from autocrine or intracrine actions of PTHrP independent of PTHR1, through signals emanating from other domains within the PTHrP molecule.

9.
Nat Struct Mol Biol ; 23(10): 921-932, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27595347

RESUMEN

Recycling of internalized receptors from endosomal compartments is essential for the receptors' cell-surface homeostasis. Sorting nexin 27 (SNX27) cooperates with the retromer complex in the recycling of proteins containing type I PSD95-Dlg-ZO1 (PDZ)-binding motifs. Here we define specific acidic amino acid sequences upstream of the PDZ-binding motif required for high-affinity engagement of the human SNX27 PDZ domain. However, a subset of SNX27 ligands, such as the ß2 adrenergic receptor and N-methyl-D-aspartate (NMDA) receptor, lack these sequence determinants. Instead, we identified conserved sites of phosphorylation that substitute for acidic residues and dramatically enhance SNX27 interactions. This newly identified mechanism suggests a likely regulatory switch for PDZ interaction and protein transport by the SNX27-retromer complex. Defining this SNX27 binding code allowed us to classify more than 400 potential SNX27 ligands with broad functional implications in signal transduction, neuronal plasticity and metabolite transport.


Asunto(s)
Endosomas/metabolismo , Nexinas de Clasificación/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Dominios PDZ , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Transporte de Proteínas , Receptores de Glutamato/metabolismo , Alineación de Secuencia , Transducción de Señal , Nexinas de Clasificación/química
10.
Mol Endocrinol ; 30(8): 889-904, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27355191

RESUMEN

Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive ß-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor "life-cycle," we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis.


Asunto(s)
Mutación/genética , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Preescolar , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Microscopía Confocal , Polimorfismo Genético , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
11.
Mol Biol Cell ; 27(8): 1367-82, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26912788

RESUMEN

The parathyroid hormone 1 receptor (PTHR) is central to the process of bone formation and remodeling. PTHR signaling requires receptor internalization into endosomes, which is then terminated by recycling or degradation. Here we show that sorting nexin 27 (SNX27) functions as an adaptor that couples PTHR to the retromer trafficking complex. SNX27 binds directly to the C-terminal PDZ-binding motif of PTHR, wiring it to retromer for endosomal sorting. The structure of SNX27 bound to the PTHR motif reveals a high-affinity interface involving conserved electrostatic interactions. Mechanistically, depletion of SNX27 or retromer augments intracellular PTHR signaling in endosomes. Osteoblasts genetically lacking SNX27 show similar disruptions in PTHR signaling and greatly reduced capacity for bone mineralization, contributing to profound skeletal deficits in SNX27-knockout mice. Taken together, our data support a critical role for SNX27-retromer mediated transport of PTHR in normal bone development.


Asunto(s)
Desarrollo Óseo/fisiología , Osteoblastos/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Nexinas de Clasificación/metabolismo , Animales , Desarrollo Óseo/genética , Remodelación Ósea/fisiología , Calcificación Fisiológica/genética , Calcificación Fisiológica/fisiología , Endosomas/metabolismo , Células HEK293/metabolismo , Humanos , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Osteoblastos/efectos de los fármacos , Dominios PDZ , Hormona Paratiroidea/farmacología , Transporte de Proteínas , Receptor de Hormona Paratiroídea Tipo 1/genética , Transducción de Señal , Nexinas de Clasificación/genética
13.
Ophthalmol Clin North Am ; 18(4): 511-28, vi, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16314216

RESUMEN

We now have at our disposal several nonsteroidal immunosuppressive and anti-inflammatory agents that may be used in addition to or instead of corticosteroids to treat ocular diseases. This article discusses some of the nonsteroidal immunosuppressive and anti-inflammatory agents available to the ophthalmologist.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Inmunosupresores/uso terapéutico , Uveítis/tratamiento farmacológico , Humanos , Resultado del Tratamiento , Uveítis/inmunología , Uveítis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...