Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 16(5): 1091-1114, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589651

RESUMEN

PAR3/INSC/LGN form an evolutionarily conserved complex required for asymmetric cell division in the developing brain, but its post-developmental function and disease relevance in the peripheral nervous system (PNS) remains unknown. We mapped a new locus for axonal Charcot-Marie-Tooth disease (CMT2) and identified a missense mutation c.209 T > G (p.Met70Arg) in the INSC gene. Modeling the INSCM70R variant in Drosophila, we showed that it caused proprioceptive defects in adult flies, leading to gait defects resembling those in CMT2 patients. Cellularly, PAR3/INSC/LGN dysfunction caused tubulin aggregation and necrotic neurodegeneration, with microtubule-stabilizing agents rescuing both morphological and functional defects of the INSCM70R mutation in the PNS. Our findings underscore the critical role of the PAR3/INSC/LGN machinery in the adult PNS and highlight a potential therapeutic target for INSC-associated CMT2.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Mutación Missense , Animales , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Modelos Animales de Enfermedad , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Nucleares , Proteínas Adaptadoras Transductoras de Señales
2.
IUBMB Life ; 74(4): 339-360, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34874101

RESUMEN

Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Autofagia/genética , Drosophila/genética , Tracto Gastrointestinal , Enfermedades Neurodegenerativas/genética
3.
iScience ; 24(12): 103437, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34877496

RESUMEN

Exosomes are important for cell-cell communication. Deficiencies in the human dihydroceramide desaturase gene, DEGS1, increase the dihydroceramide-to-ceramide ratio and cause hypomyelinating leukodystrophy. However, the disease mechanism remains unknown. Here, we developed an in vivo assay with spatially controlled expression of exosome markers in Drosophila eye imaginal discs and showed that the level and activity of the DEGS1 ortholog, Ifc, correlated with exosome production. Knocking out ifc decreased the density of the exosome precursor intraluminal vesicles (ILVs) in the multivesicular endosomes (MVEs) and reduced the number of exosomes released. While ifc overexpression and autophagy inhibition both enhanced exosome production, combining the two had no additive effect. Moreover, DEGS1 activity was sufficient to drive ILV formation in vitro. Together, DEGS1/Ifc controls the dihydroceramide-to-ceramide ratio and enhances exosome secretion by promoting ILV formation and preventing the autophagic degradation of MVEs. These findings provide a potential cause for the neuropathy associated with DEGS1-deficient mutations.

4.
Front Mol Neurosci ; 14: 797833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955747

RESUMEN

Parkinson's disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.

5.
Cell Rep ; 36(12): 109729, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551295

RESUMEN

Human ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an evolutionarily conserved core subunit of mitochondrial respiratory chain complex III. We recently identified the disease-associated variants of UQCRC1 from patients with familial parkinsonism, but its function remains unclear. Here we investigate the endogenous function of UQCRC1 in the human neuronal cell line and the Drosophila nervous system. Flies with neuronal knockdown of uqcrc1 exhibit age-dependent parkinsonism-resembling defects, including dopaminergic neuron reduction and locomotor decline, and are ameliorated by UQCRC1 expression. Lethality of uqcrc1-KO is also rescued by neuronally expressing UQCRC1, but not the disease-causing variant, providing a platform to discern the pathogenicity of this mutation. Furthermore, UQCRC1 associates with the apoptosis trigger cytochrome c (cyt-c), and uqcrc1 deficiency increases cyt-c in the cytoplasmic fraction and activates the caspase cascade. Depleting cyt-c or expression of the anti-apoptotic p35 ameliorates uqcrc1-mediated neurodegeneration. Our findings identify a role for UQCRC1 in regulating cyt-c-induced apoptosis.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Citocromos c/metabolismo , Citoplasma/metabolismo , Neuronas Dopaminérgicas/citología , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/genética , Edición Génica , Humanos , Larva/metabolismo , Locomoción , Mitocondrias/metabolismo , Mitocondrias/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Unión Proteica , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo
6.
Cell Rep ; 35(2): 108972, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852856

RESUMEN

Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ácido Graso Desaturasas/genética , Proteínas de la Membrana/genética , NADPH Oxidasas/genética , Proteína de Unión al GTP rac1/genética , Animales , Línea Celular Tumoral , Ceramidas/metabolismo , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/metabolismo , Electrorretinografía , Ácido Graso Desaturasas/antagonistas & inhibidores , Ácido Graso Desaturasas/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/deficiencia , NADPH Oxidasas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patología , Mutación Puntual , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Retina/patología , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
7.
Elife ; 102021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33666175

RESUMEN

Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here, we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.


Asunto(s)
Drosophila melanogaster/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Técnicas de Sustitución del Gen , Imidazoles , Neuronas/fisiología , Temperatura , Proteínas de Unión al GTP rab/deficiencia
8.
Brain ; 143(11): 3352-3373, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33141179

RESUMEN

Parkinson's disease is a neurodegenerative disorder with a multifactorial aetiology. Nevertheless, the genetic predisposition in many families with multi-incidence disease remains unknown. This study aimed to identify novel genes that cause familial Parkinson's disease. Whole exome sequencing was performed in three affected members of the index family with a late-onset autosomal-dominant parkinsonism and polyneuropathy. We identified a novel heterozygous substitution c.941A>C (p.Tyr314Ser) in the mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) gene, which co-segregates with disease within the family. Additional analysis of 699 unrelated Parkinson's disease probands with autosomal-dominant Parkinson's disease and 1934 patients with sporadic Parkinson's disease revealed another two variants in UQCRC1 in the probands with familial Parkinson's disease, c.931A>C (p.Ile311Leu) and an allele with concomitant splicing mutation (c.70-1G>A) and a frameshift insertion (c.73_74insG, p.Ala25Glyfs*27). All substitutions were absent in 1077 controls and the Taiwan Biobank exome database from healthy participants (n = 1517 exomes). We then assayed the pathogenicity of the identified rare variants using CRISPR/Cas9-based knock-in human dopaminergic SH-SY5Y cell lines, Drosophila and mouse models. Mutant UQCRC1 expression leads to neurite degeneration and mitochondrial respiratory chain dysfunction in SH-SY5Y cells. UQCRC1 p.Tyr314Ser knock-in Drosophila and mouse models exhibit age-dependent locomotor defects, dopaminergic neuronal loss, peripheral neuropathy, impaired respiratory chain complex III activity and aberrant mitochondrial ultrastructures in nigral neurons. Furthermore, intraperitoneal injection of levodopa could significantly improve the motor dysfunction in UQCRC1 p.Tyr314Ser mutant knock-in mice. Taken together, our in vitro and in vivo studies support the functional pathogenicity of rare UQCRC1 variants in familial parkinsonism. Our findings expand an additional link of mitochondrial complex III dysfunction in Parkinson's disease.


Asunto(s)
Mitocondrias/genética , Trastornos Parkinsonianos/genética , Polineuropatías/genética , Edad de Inicio , Anciano , Animales , Antiparkinsonianos/uso terapéutico , Línea Celular , Aberraciones Cromosómicas , Drosophila , Complejo III de Transporte de Electrones/genética , Femenino , Mutación del Sistema de Lectura , Técnicas de Sustitución del Gen , Genes Dominantes , Humanos , Levodopa/uso terapéutico , Masculino , Ratones , Persona de Mediana Edad , Mutación/genética , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/tratamiento farmacológico , Linaje , Polineuropatías/etiología , Secuenciación del Exoma
9.
Dis Model Mech ; 13(8)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32680850

RESUMEN

Maple syrup urine disease (MSUD) is an inherited error in the metabolism of branched-chain amino acids (BCAAs) caused by a severe deficiency of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which ultimately leads to neurological disorders. The limited therapies, including protein-restricted diets and liver transplants, are not as effective as they could be for the treatment of MSUD due to the current lack of molecular insights into the disease pathogenesis. To address this issue, we developed a Drosophila model of MSUD by knocking out the dDBT gene, an ortholog of the human gene encoding the dihydrolipoamide branched chain transacylase (DBT) subunit of BCKDH. The homozygous dDBT mutant larvae recapitulate an array of MSUD phenotypes, including aberrant BCAA accumulation, developmental defects, poor mobile behavior and disrupted L-glutamate homeostasis. Moreover, the dDBT mutation causes neuronal apoptosis during the developmental progression of larval brains. The genetic and functional evidence generated by in vivo depletion of dDBT expression in the eye indicates severe impairment of retinal rhabdomeres. Further, the dDBT mutant shows elevated oxidative stress and higher lipid peroxidation accumulation in the larval brain. Therefore, we conclude from in vivo evidence that the loss of dDBT results in oxidative brain damage that may lead to neuronal cell death and contribute to aspects of MSUD pathology. Importantly, when the dDBT mutants were administrated with Metformin, the aberrances in BCAA levels and motor behavior were ameliorated. This intriguing outcome strongly merits the use of the dDBT mutant as a platform for developing MSUD therapies.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Apoptosis , Encéfalo/enzimología , Caseína Cinasa 1 épsilon/deficiencia , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/enzimología , Enfermedad de la Orina de Jarabe de Arce/enzimología , Neurogénesis , Neuronas/enzimología , Animales , Animales Modificados Genéticamente , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Caseína Cinasa 1 épsilon/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Larva/enzimología , Larva/genética , Peroxidación de Lípido , Masculino , Enfermedad de la Orina de Jarabe de Arce/tratamiento farmacológico , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/patología , Metformina/farmacología , Actividad Motora , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo , Fenotipo
10.
Aging Cell ; 19(8): e13179, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32627932

RESUMEN

Brain function has been implicated to control the aging process and modulate lifespan. However, continuous efforts remain for the identification of the minimal sufficient brain region and the underlying mechanism for neuronal regulation of longevity. Here, we show that the Drosophila lifespan is modulated by rab27 functioning in a small subset of neurons of the mushroom bodies (MB), a brain structure that shares analogous functions with mammalian hippocampus and hypothalamus. Depleting rab27 in the α/ßp neurons of the MB is sufficient to extend lifespan, enhance systemic stress responses, and alter energy homeostasis, all without trade-offs in major life functions. Within the α/ßp neurons, rab27KO causes the mislocalization of phosphorylated S6K thus attenuates TOR signaling, resulting in decreased protein synthesis and reduced neuronal activity. Consistently, expression of dominant-negative S6K in the α/ßp neurons increases lifespan. Furthermore, the expression of phospho-mimetic S6 in α/ßp neurons of rab27KO rescued local protein synthesis and reversed lifespan extension. These findings demonstrate that inhibiting TOR-mediated protein synthesis in α/ßp neurons is sufficient to promote longevity.


Asunto(s)
Cuerpos Pedunculados/química , Neuronas/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Animales , Drosophila
11.
Nat Commun ; 11(1): 3147, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561720

RESUMEN

Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade ß-catenin. Disruption of ß-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and ß-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.


Asunto(s)
Proteínas Argonautas/metabolismo , Senescencia Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Germinativas/metabolismo , Animales , Proteínas Argonautas/genética , Cadherinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Ovario/citología , Ovario/metabolismo , Retroelementos/genética , Transducción de Señal , Nicho de Células Madre/fisiología , Células Madre/metabolismo , Receptores Toll-Like/metabolismo , beta Catenina/metabolismo
12.
Cell Mol Life Sci ; 77(7): 1421-1434, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31728576

RESUMEN

Transthyretin amyloidosis (ATTR) is a progressive life-threatening disease characterized by the deposition of transthyretin (TTR) amyloid fibrils. Several pathogenic variants have been shown to destabilize TTR tetramers, leading to aggregation of misfolded TTR fibrils. However, factors that underlie the differential age of disease onset amongst amyloidogenic TTR variants remain elusive. Here, we examined the biological properties of various TTR mutations and found that the cellular secretory pattern of the wild-type (WT) TTR was similar to those of the late-onset mutant (Ala97Ser, p. Ala117Ser), stable mutant (Thr119Met, p. Thr139Met), early-onset mutant (Val30Met, p. Val50Met), but not in the unstable mutant (Asp18Gly, p. Asp38Gly). Cytotoxicity assays revealed their toxicities in the order of Val30Met > Ala97Ser > WT > Thr119Met in neuroblastoma cells. Surprisingly, while early-onset amyloidogenic TTR monomers (M-TTRs) are retained by the endoplasmic reticulum quality control (ERQC), late-onset amyloidogenic M-TTRs can be secreted extracellularly. Treatment of thapsigargin (Tg) to activate the unfolded protein response (UPR) alleviates Ala97Ser M-TTR secretion. Interestingly, Ala97Ser TTR overexpression in Drosophila causes late-onset fast neurodegeneration and a relatively short lifespan, recapitulating human disease progression. Our study demonstrates that the escape of TTR monomers from the ERQC may underlie late-onset amyloidogenesis in patients and suggests that targeting ERQC could mitigate late-onset ATTR.


Asunto(s)
Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/patología , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Prealbúmina/genética , Neuropatías Amiloides Familiares/complicaciones , Animales , Muerte Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Drosophila , Células HEK293 , Humanos , Locomoción , Longevidad , Degeneración Nerviosa/complicaciones
13.
Elife ; 62017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144896

RESUMEN

Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/fisiología , Tracto Gastrointestinal/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas del Ojo/metabolismo , Técnicas de Inactivación de Genes , Homeostasis , Proteínas de la Membrana/genética
14.
Hum Mol Genet ; 26(20): 3909-3921, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016849

RESUMEN

Impaired clearance of amyloid-ß peptide (Aß) leads to abnormal extracellular accumulation of this neurotoxic protein that drives neurodegeneration in sporadic Alzheimer's disease (AD). Connective tissue growth factor (CTGF/CCN2) expression is elevated in plaque-surrounding astrocytes in AD patients. However, the role of CTGF in AD pathogenesis remains unclear. Here we characterized the neuroprotective activity of CTGF. We found that CTGF facilitated Aß uptake and subsequent degradation within primary glia and neuroblastoma cells. CTGF enhanced extracellular Aß degradation via membrane-bound matrix metalloproteinase-14 (MMP14) in glia and extracellular MMP13 in neurons. In the brain of a Drosophila AD model, glial-expression of CTGF reduced Aß deposits, improved locomotor function, and rescued memory deficits. Neuroprotective potential of CTGF against Aß42-induced photoreceptor degeneration was disrupted through silencing MMPs. Therefore, CTGF may represent a node for potential AD therapeutics as it intervenes in glia-neuron communication via specific MMPs to alleviate Aß neurotoxicity in the central nervous system.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Astrocitos/metabolismo , Encéfalo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/fisiología , Modelos Animales de Enfermedad , Drosophila , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Ratas
15.
EMBO Rep ; 18(7): 1150-1165, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28507162

RESUMEN

Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent (ifc), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc-KO photoreceptors, resulting in activity-dependent neurodegeneration. Lipid-containing Atg8/LC3-positive puncta accumulate in ifc-KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc-KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc-KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc-KO defects. Human dhCer desaturase rescues ifc-KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity-dependent degeneration caused by dhCer accumulation.


Asunto(s)
Autofagia , Ceramidas/metabolismo , Metabolismo de los Lípidos , Animales , Apoptosis , Línea Celular Tumoral , Ceramidas/análisis , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Ácido Graso Desaturasas/genética , Técnicas de Inactivación de Genes , Humanos , Luz/efectos adversos , Lipólisis , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Enfermedades Neurodegenerativas/prevención & control , Células Fotorreceptoras de Invertebrados/patología , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Esfingolípidos/metabolismo
16.
Brain ; 140(5): 1252-1266, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369220

RESUMEN

Distal hereditary motor neuropathy is a heterogeneous group of inherited neuropathies characterized by distal limb muscle weakness and atrophy. Although at least 15 genes have been implicated in distal hereditary motor neuropathy, the genetic causes remain elusive in many families. To identify an additional causal gene for distal hereditary motor neuropathy, we performed exome sequencing for two affected individuals and two unaffected members in a Taiwanese family with an autosomal dominant distal hereditary motor neuropathy in which mutations in common distal hereditary motor neuropathy-implicated genes had been excluded. The exome sequencing revealed a heterozygous mutation, c.770A > G (p.His257Arg), in the cytoplasmic tryptophanyl-tRNA synthetase (TrpRS) gene (WARS) that co-segregates with the neuropathy in the family. Further analyses of WARS in an additional 79 Taiwanese pedigrees with inherited neuropathies and 163 index cases from Australian, European, and Korean distal hereditary motor neuropathy families identified the same mutation in another Taiwanese distal hereditary motor neuropathy pedigree with different ancestries and one additional Belgian distal hereditary motor neuropathy family of Caucasian origin. Cell transfection studies demonstrated a dominant-negative effect of the p.His257Arg mutation on aminoacylation activity of TrpRS, which subsequently compromised protein synthesis and reduced cell viability. His257Arg TrpRS also inhibited neurite outgrowth and led to neurite degeneration in the neuronal cell lines and rat motor neurons. Further in vitro analyses showed that the WARS mutation could potentiate the angiostatic activities of TrpRS by enhancing its interaction with vascular endothelial-cadherin. Taken together, these findings establish WARS as a gene whose mutations may cause distal hereditary motor neuropathy and alter canonical and non-canonical functions of TrpRS.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Triptófano-ARNt Ligasa/genética , Animales , Supervivencia Celular , Células Cultivadas , Exoma/genética , Femenino , Humanos , Masculino , Ratones , Mutación , Neuritas/patología , Neuritas/fisiología , Linaje , Biosíntesis de Proteínas/genética , Proteínas , Análisis de Secuencia de ADN , Triptófano-ARNt Ligasa/metabolismo
17.
Cell Biosci ; 4(1): 63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25364499

RESUMEN

Drosophila melanogaster has been a classic model organism for the studies of genetics. More than 15,000 Drosophila genes have been annotated since the entire genome was sequenced; however, many of them still lack functional characterization. Various gene-manipulating approaches in Drosophila have been developed for the function analysis of genes. Here, we summarize some representative strategies utilized for Drosophila gene targeting, from the unbiased ethyl methanesulfonate (EMS) mutagenesis and transposable element insertion, to insertional/replacement homologous recombination and site-specific nucleases such as the zinc-finger nuclease (ZFN), the transcription activator-like effector nuclease (TALEN) and the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. Specifically, we evaluate the pros and cons of each technique in a historical perspective. This review discuss important factors that should be taken into consideration for the selection of a strategy that best fits the specific needs of a gene knockout project.

18.
Elife ; 2: e01064, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24327558

RESUMEN

The small GTPase Rab7 is a key regulator of endosomal maturation in eukaryotic cells. Mutations in rab7 are thought to cause the dominant neuropathy Charcot-Marie-Tooth 2B (CMT2B) by a gain-of-function mechanism. Here we show that loss of rab7, but not overexpression of rab7 CMT2B mutants, causes adult-onset neurodegeneration in a Drosophila model. All CMT2B mutant proteins retain 10-50% function based on quantitative imaging, electrophysiology, and rescue experiments in sensory and motor neurons in vivo. Consequently, expression of CMT2B mutants at levels between 0.5 and 10-fold their endogenous levels fully rescues the neuropathy-like phenotypes of the rab7 mutant. Live imaging reveals that CMT2B proteins are inefficiently recruited to endosomes, but do not impair endosomal maturation. These findings are not consistent with a gain-of-function mechanism. Instead, they indicate a dosage-dependent sensitivity of neurons to rab7-dependent degradation. Our results suggest a therapeutic approach opposite to the currently proposed reduction of mutant protein function. DOI: http://dx.doi.org/10.7554/eLife.01064.001.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Enfermedades Neurodegenerativas/genética , Proteínas de Unión al GTP rab/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Drosophila , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Laminopatías , Datos de Secuencia Molecular , Células Receptoras Sensoriales/metabolismo , Homología de Secuencia de Ácido Nucleico , Proteínas de Unión al GTP rab/química , Proteínas de Unión a GTP rab7
19.
Cell Mol Life Sci ; 70(16): 2919-34, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23132096

RESUMEN

Defects in membrane trafficking and degradation are hallmarks of most, and maybe all, neurodegenerative disorders. Such defects typically result in the accumulation of undegraded proteins due to aberrant endosomal sorting, lysosomal degradation, or autophagy. The genetic or environmental cause of a specific disease may directly affect these membrane trafficking processes. Alternatively, changes in intracellular sorting and degradation can occur as cellular responses of degenerating neurons to unrelated primary defects such as insoluble protein aggregates or other neurotoxic insults. Importantly, altered membrane trafficking may contribute to the pathogenesis or indeed protect the neuron. The observation of dramatic changes to membrane trafficking thus comes with the challenging need to distinguish pathological from protective alterations. Here, we will review our current knowledge about the protective and destructive roles of membrane trafficking in neuronal maintenance and degeneration. In particular, we will first focus on the question of what type of membrane trafficking keeps healthy neurons alive in the first place. Next, we will discuss what alterations of membrane trafficking are known to occur in Alzheimer's disease and other tauopathies, Parkinson's disease, polyQ diseases, peripheral neuropathies, and lysosomal storage disorders. Combining the maintenance and degeneration viewpoints may yield insight into how to distinguish when membrane trafficking functions protectively or contributes to degeneration.


Asunto(s)
Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Animales , Membrana Celular/metabolismo , Humanos , Transporte de Proteínas
20.
Commun Integr Biol ; 5(2): 179-83, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22808327

RESUMEN

Evaluating how an individual gene contributes to a particular biological process benefits greatly from a comprehensive understanding of all members of its gene family. Such knowledge is ideally obtained using multicellular model organisms, which provide rapid and decisive platforms for determining gene function. We recently established a novel transgenesis platform in Drosophila to systematically knock out all members of the Rab small GTPase family of membrane regulators. This platform combines BAC transgenesis/recombineering with ends-out homologous recombinations and Gateway(TM) technologies and provides a new rapid and scalable method that eases the manipulation of endogenous loci. This method not only allows for the generation of molecularly defined lesions, but also the precise replacement or tagging of genes in their endogenous loci. Using this method, we found that up to half of all Rab GTPases exhibit enriched expression at synapses in the nervous system. Here we provide critical details about the underlying recombineering and transgenesis method, new cassettes for tagging endogenous loci and information on important parameters that will allow Drosophila researchers to target members of other gene families.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...