Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Heliyon ; 10(12): e32210, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975212

RESUMEN

Control of a bioprocess is a challenging task mainly due to the nonlinearity of the process, the complex nature of microorganisms, and variations in critical parameters such as temperature, pH, and agitator speed. Generally, the optimum values chosen for critical parameters during Escherichia coli (E.coli) K-12fed-batch fermentation are37 ᵒC for temperature, 7 for pH, and 35 % for Dissolved Oxygen (DO). The objective of this research is to enhance biomass concentration while minimizing energy consumption. To achieve this, an Event-Triggered Control (ETC) scheme based on feedback-feed forward control is proposed. The ETC system dynamically adjusts the substrate feed rate in response to variations in critical parameters. We compare the performance of classical Proportional Integral (PI) controllers and advanced Model Predictive Control (MPC) controllers in terms of bioprocess yield. Initially, the data are collected from a laboratory-scaled 3L bioreactor setup under fed-batch operating conditions, and data-driven models are developed using system identification techniques. Then, classical Proportional Integral (PI) and advanced Model Predictive Control (MPC) based feedback controllers are developed for controlling the yield of bioprocess by manipulating substrate flow rate, and their performances are compared. PI and MPC-based Event Triggered Feed Forward Controllers are designed to increase the yield and to suppress the effect of known disturbances due to critical parameters. Whenever there is a variation in the value of a critical parameter, it is considered an event, and ETC initiates a control action by manipulating the substrate feed rate. PI and MPC-based ETC controllers are developed in simulation, and their closed-loop performances are compared. It is observed that the Integral Square Error (ISE) is notably minimized to 4.668 for MPC with disturbance and 4.742 for MPC with Feed Forward Control. Similarly, the Integral Absolute Error (IAE) reduces to 2.453 for MPC with disturbance and 0.8124 for MPC with Feed Forward Control. The simulation results reveal that the MPC-based ETC control scheme enhances the biomass yield by 7 %, and this result is verified experimentally. This system dynamically adjusts the substrate feed rate in response to variations in critical parameters, which is a novel approach in the field of bioprocess control. Also, the proposed control schemes help reduce the frequency of communication between controller and actuator, which reduces power consumption.

2.
ACS Omega ; 9(16): 17878-17890, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680352

RESUMEN

Aluminum metal cast composites (AMCCs) are frequently used in high-tech sectors such as automobiles, aerospace, biomedical, electronics, and others to fabricate precise and especially responsible parts. The mechanical and wear behavior of the metal matrix composites (MMCs) is anticipated to be influenced by the cooling agent's action and the cooling temperature. This research paper presents the findings of a series of tests to investigate the mechanical, wear, and fracture behavior of hybrid MMCs made of Al7075 reinforced by varying wt % of nano-sized Al2O3 and Gr and quenched with water and ice cubes. The heat-treated Al7075 alloy hybrid composites were evaluated for their hardness, tensile, and wear behavior, showcasing a significant process innovation. The heat treatment process greatly improved the hybrid composites' mechanical and wear performance. The samples quenched in ice attained the highest hardness of 119 VHN. There is a 45.37% improvement in the hardness of base alloy with the addition of 3% of Al2O3 and 1% of graphite particles. Further, the highest tensile and compression strengths were found in the ice-quenched 3% Al2O3 and 1% graphite hybrid composites with improvements of 34.2 and 48.83%, respectively, compared to the water-quenched base alloy. Under the samples quenched in ice, the mechanical and wear behavior improved. The tensile fractured surface showed voids, particle pullouts, and dimples. The worn-out surface of wear test samples of the created hybrid composite had micro pits, delamination layers, and microcracks.

3.
Front Psychol ; 14: 1181930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780163

RESUMEN

This paper presents a literature review on the topic of organizational performance. The study conceptualizes the overall performance of the organization as comprising of organizational citizenship behaviors (OCB) and counterproductive work behaviors (CWB). While there are numerous research studies on OCB, not many have focused on how OCB and CWB affect organizational performance simultaneously. The paper provides an explanation of the OCB and CWB concepts, followed by the primary research and focus of the study. The article presents a comprehensive framework for understanding the meanings of OCB and CWB, along with an internal hierarchy. This framework will serve as a beneficial resource for working managers, academics, and researchers, who seek to optimize economic productivity through improved understanding and management of OCB and CWB.

4.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110948

RESUMEN

Solar light is a renewable source of energy that can be used and transformed into electricity using clean energy technology. In this study, we used direct current magnetron sputtering (DCMS) to sputter p-type cuprous oxide (Cu2O) films with different oxygen flow rates (fO2) as hole-transport layers (HTLs) for perovskite solar cells (PSCs). The PSC device with the structure of ITO/Cu2O/perovskite/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/bathocuproine (BCP)/Ag showed a power conversion efficiency (PCE) of 7.91%. Subsequently, a high-power impulse magnetron sputtering (HiPIMS) Cu2O film was embedded and promoted the device performance to 10.29%. As HiPIMS has a high ionization rate, it can create higher density films with low surface roughness, which passivates surface/interface defects and reduces the leakage current of PSCs. We further applied the superimposed high-power impulse magnetron sputtering (superimposed HiPIMS) derived Cu2O as the HTL, and we observed PCEs of 15.20% under one sun (AM1.5G, 1000 Wm-2) and 25.09% under indoor illumination (TL-84, 1000 lux). In addition, this PSC device outperformed by demonstrating remarkable long-term stability via retaining 97.6% (dark, Ar) of its performance for over 2000 h.

5.
ACS Appl Mater Interfaces ; 15(8): 10907-10917, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700551

RESUMEN

Near-infrared (NIR) small-molecule acceptors that absorb at wavelengths of up to 1000 nm are attractive for applications in organic photodetectors (OPDs) and biometrics. In this study, we incorporated IEICO-4F as the third component for PffBT4T-2OD:PC71BM-based OPDs to provide an efficient NIR response while greatly suppressing the leakage current at reverse bias. By varying the blend ratio and thickness (250-600 nm), we obtained an NIR OPD displaying an ultralow dark-current density (JD = 2.62 nA cm-2), ultrahigh detectivity [D* = 7.2 × 1012 Jones (850 nm)], high sensitivity, and photoresponsivity covering the region from the ultraviolet to the NIR. We used tapping-mode atomic force microscopy, optical microscopy, grazing-incidence wide-angle X-ray scattering, and contact angle measurements to investigate the effect of IEICO-4F on the performance of the ternary OPDs. The low compatibility of PffBT4T-2OD and IEICO-4F, originating from weak intermolecular interactions, allowed us to manipulate the degree of phase separation between the donor and acceptor in the ternary blends, leading to an optimized blend morphology featuring efficient charge separation, transport, and collection. To demonstrate its applicability, we integrated our OPD with two light-emitting diodes and used the system for precisely calculated transmissive pulse oximetry.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36498158

RESUMEN

The Movement Control Order (MCO) enacted during the COVID-19 pandemic has profoundly altered the social life and behaviour of the Malaysian population. Because the society is facing huge social and economic challenges that need individuals to work together to solve, prosocial behaviour is regarded as one of the most important social determinants. Because it is related with individual and societal benefits, participating in prosocial activities may be a major protective factor during times of global crisis. Rather than focusing only on medical and psychiatric paradigms, perhaps all that is necessary to overcome the COVID-19 risks is for individuals to make personal sacrifices for the sake of others. In reality, a large number of initiatives proven to be beneficial in decreasing viral transmission include a trade-off between individual and collective interests. Given its crucial importance, the purpose of this concept paper is to provide some insight into prosocial behaviour during the COVID-19 period. Understanding prosocial behaviour during the COVID-19 pandemic is crucial because it may assist in the establishment of a post-COVID society and provide useful strategies for coping with future crises.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Altruismo , Pandemias/prevención & control , Adaptación Psicológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...