Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 111(5): 1048-1058, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36544251

RESUMEN

Due to the poor tribological properties of titanium (Ti) and its alloy Ti6Al4V (commonly used for ventricular assist devices manufacturing), diamond-like carbon (DLC) films with excellent anti-wear properties are pursued to improve the wear resistance of Ti and its alloys. Considering the effect of temperature on magnets inside pump impellers and workpiece deformation, DLC films are preferred to be prepared under low temperature. In this study, DLC films were prepared on Ti6Al4V alloys by periodic and continuous processes, and the corresponding maximum deposition temperature was 85 and 154°C, respectively. The periodic DLC films exhibited the feature of columnar structure, and the surface hillocks were less uniform than that of continuous DLC films. The periodic DLC films possessed more sp3 -bonded structures, and the accessorial sp3 -bonding mainly existed in the form of CH. Compared to continuous DLC films, the periodic DLC films had lower residual stress and better adhesion with Ti6Al4V substrates. Both DLC films could effectively reduce the friction coefficient and wear rate of Ti6Al4V alloys both in air and fetal bovine serum (FBS), and the periodic DLC films exhibited superior anti-wear properties to that of continuous DLC films in FBS. Haemocompatibility evaluation revealed that both DLC films presented similar levels of more human platelet adhesion and activation as compared with that of bare Ti6Al4V. However, both DLC films significantly prolonged plasma clotting time in comparison to bare Ti6Al4V. This study demonstrates the potential of low-temperature DLC films as wear-resistant surface modification for VADs.


Asunto(s)
Carbono , Corazón Auxiliar , Humanos , Ensayo de Materiales , Temperatura , Carbono/química , Propiedades de Superficie , Aleaciones
2.
Biomacromolecules ; 23(10): 4318-4326, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36048616

RESUMEN

Non-thrombogenic surfaces for extracorporeal membrane oxygenation (ECMO) devices are important to increase their duration of usage and to enable long-term life support. However, the contact of blood with the hydrophobic synthetic ECMO membrane materials such as poly(4-methyl-1-pentene) (PMP) can activate the coagulation cascade, causing thrombosis and a series of consequent complications during ECMO operation. Targeting this problem, we proposed to graft highly hydrophilic sulfoxide polymer brushes onto the PMP surfaces via gamma ray irradiation-initiated polymerization to improve the hemocompatibility of the membrane. Through this chemical modification, the surface of the PMP film is altered from hydrophobic to hydrophilic. The extent of plasma protein adsorption and platelet adhesion, the prerequisite mediators of the coagulation cascade and thrombus formation, are drastically reduced compared with those of the unmodified PMP film. Therefore, the method provides a facile approach to modify PMP materials with excellent antifouling properties and improved hemocompatibility demanded by the applications in ECMO and other blood-contacting medical devices.


Asunto(s)
Incrustaciones Biológicas , Oxigenación por Membrana Extracorpórea , Incrustaciones Biológicas/prevención & control , Proteínas Sanguíneas , Polímeros/química , Sulfóxidos , Propiedades de Superficie
3.
J Mater Chem B ; 10(26): 4974-4983, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35695541

RESUMEN

Extracorporeal membrane oxygenation (ECMO), a critical life-sustaining tool, faces significant challenges for the maintenance of normal haemostasis due to the large volume of circulating blood continuously in contact with artificial surfaces, hyperoxia and excessive shear stresses of the extracorporeal circuit. From a biomaterials perspective, it has been hypothesised that drug eluting coatings composed of haemocompatible hydrogels loaded with an anticoagulant drug could potentially enhance the haemocompatibility of the circuit. Poly(ethylene glycol) (PEG) has been well established as a biocompatible and anti-fouling material with wide biomedical application. Unfractionated heparin is the most commonly used anticoagulant for ECMO. In the present study, the feasibility of using heparin-loaded PEG-based hydrogels as anti-thrombogenic surface coatings for ECMO was investigated. The hydrogels were synthesised by photopolymerisation using poly(ethylene glycol) diacrylate (PEGDA) as the crosslinking monomer and poly(ethylene glycol) methacrylate (PEGMA) as the hydrophilic monomer, with heparin loaded into the pre-gel solution. Factors which could affect the release of heparin were investigated, including the ratio of PEGDA/PEGMA, water content, loading level of heparin and the flow of fluid past the hydrogel. Our results showed that increased crosslinker content and decreased water content led to slower heparin release. The hydrogels with water contents of 60 wt% and 70 wt% could achieve a sustained heparin release by adjusting the ratio of PEGDA/PEGMA. The anticoagulation efficacy of the released heparin was evaluated by measuring the activated clotting time of whole blood. The hydrogels with desirable heparin release profiles were prepared onto poly(4-methyl-1-pentene) (PMP) films with the same chemical composition as the PMP ECMO membranes. The coatings showed sustained heparin release with a cumulative release of 70-80% after 7 days. Haemocompatibility tests demonstrated that PEG hydrogel coatings significantly reduced platelet adhesion and prolonged plasma recalcification time. These results suggest that heparin-loaded PEG hydrogels are potential anti-thrombogenic coatings for ECMO.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Heparina , Materiales Biocompatibles/química , Heparina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Polietilenglicoles/química , Agua
4.
J Biomech ; 130: 110898, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896790

RESUMEN

Despite decades of technological advancements in blood-contacting medical devices, complications related to shear flow-induced blood trauma are still frequently observed in clinic. Blood trauma includes haemolysis, platelet activation, and degradation of High Molecular Weight von Willebrand Factor (HMW vWF) multimers, all of which are dependent on the exposure time and magnitude of shear stress. Specifically, accumulating evidence supports that when blood is exposed to shear stresses above a certain threshold, blood trauma ensues; however, it remains unclear how various constituents of blood are affected by discrete shears experimentally. The aim of this study was to expose blood to discrete shear stresses and evaluate blood trauma indices that reflect red cell, platelet, and vWF structure. Citrated human whole blood (n = 6) was collected and its haematocrit was adjusted to 30 ± 2% by adding either phosphate buffered saline (PBS) or polyvinylpyrrolidone (PVP). Viscosity of whole blood was adjusted to 3.0, 12.5, 22.5 and 37.5 mPa·s to yield stresses of 3, 6, 9, 12, 50, 90 and 150 Pa in a custom-developed shearing system. Blood samples were exposed to shear for 0, 300, 600 and 900 s. Haemolysis was measured using spectrophotometry, platelet activation using flow cytometry, and HMW vWF multimer degradation was quantified with gel electrophoresis and immunoblotting. For tolerance to 300, 600 and 900 s of exposure time, the critical threshold of haemolysis was reached after blood was exposed to 90 Pa for 600 s (P < 0.05), platelet activation and HMW vWF multimer degradation were 50 Pa for 600 s and 12 Pa for 300 s respectively (P < 0.05). Our experimental results provide simultaneous comparison of blood trauma indices and thus also the relation between shear duration and magnitude required to induce damage to red cells, platelets, and vWF. Our results also demonstrate that near-physiological shear stress (<12 Pa) is needed in order to completely avoid any form of blood trauma. Therefore, there is an urgent need to design low shear-flow medical devices in order to avoid blood trauma in this blood-contacting medical device field.


Asunto(s)
Plaquetas , Factor de von Willebrand , Eritrocitos , Humanos , Activación Plaquetaria , Estrés Mecánico
5.
ACS Biomater Sci Eng ; 7(9): 4402-4419, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34436868

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is used in critical care to manage patients with severe respiratory and cardiac failure. ECMO brings blood from a critically ill patient into contact with a non-endothelialized circuit which can cause clotting and bleeding simultaneously in this population. Continuous systemic anticoagulation is needed during ECMO. The membrane oxygenator, which is a critical component of the extracorporeal circuit, is prone to significant thrombus formation due to its large surface area and areas of low, turbulent, and stagnant flow. Various surface coatings, including but not limited to heparin, albumin, poly(ethylene glycol), phosphorylcholine, and poly(2-methoxyethyl acrylate), have been developed to reduce thrombus formation during ECMO. The present work provides an up-to-date overview of anti-thrombogenic surface coatings for ECMO, including both commercial coatings and those under development. The focus is placed on the coatings being developed for oxygenators. Overall, zwitterionic polymer coatings, nitric oxide (NO)-releasing coatings, and lubricant-infused coatings have attracted more attention than other coatings and showed some improvement in in vitro and in vivo anti-thrombogenic effects. However, most studies lacked standard hemocompatibility assessment and comparison studies with current clinically used coatings, either heparin coatings or nonheparin coatings. Moreover, this review identifies that further investigation on the thrombo-resistance, stability and durability of coatings under rated flow conditions and the effects of coatings on the function of oxygenators (pressure drop and gas transfer) are needed. Therefore, extensive further development is required before these new coatings can be used in the clinic.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Coagulación Sanguínea , Heparina , Humanos , Oxigenadores de Membrana , Trombosis/prevención & control
6.
ASAIO J ; 67(3): 270-275, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33627600

RESUMEN

The development of adult use right ventricular assist devices (RVADs) and pediatric left ventricular assist devices (pediatric LVADs) have significantly lagged behind compared to adult use left ventricular assist devices (LVADs). The HeartWare ventricular assist device (HVAD) intended to be used for adult's systemic support, is increasingly used off-label for adult pulmonary and pediatric systemic support. Due to different hemodynamics and physiology, however, the HVAD's hemocompatibility profiles can be drastically different when used in adult pulmonary circulation or in children, compared to its intended usage state, which could have a direct clinical and developmental relevance. Taking these considerations in mind, we sought to conduct in vitro hemocompatibility testing of HVAD in adult systemic, pediatric systemic and adult pulmonary support conditions. Two HVADs coupled to custom-built blood circulation loops were tested for 6 hours using bovine blood at 37°C under adult systemic, pediatric systemic, and adult pulmonary flow conditions (flow rate = 5.0, 2.5, and 4.5 L/min; differential pressure = 100, 69, and 20 mm Hg, respectively). Normalized index of hemolysis for adult systemic, pediatric systemic, and adult pulmonary conditions were 0.0083, 0.0039, and 0.0017 g/100 L, respectively. No significant difference was seen in platelet activation for these given conditions. High molecular weight von Willebrand factor multimer degradation was evident in all conditions (p < 0.05). In conclusion, alterations in the usage mode produce substantial differences in hemocompatibility of the HVAD. These findings would not only have clinical relevance but will also facilitate future adult use RVAD and pediatric LVAD development.


Asunto(s)
Corazón Auxiliar , Ensayo de Materiales , Modelos Cardiovasculares , Adulto , Animales , Bovinos , Niño , Femenino , Corazón Auxiliar/efectos adversos , Humanos , Técnicas In Vitro , Masculino
7.
Artif Organs ; 44(12): 1276-1285, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32644199

RESUMEN

Use of extracorporeal membrane oxygenation (ECMO) is expanding, however, it is still associated with significant morbidity and mortality. Activation of inflammatory and innate immune responses and hemostatic alterations contribute to complications. Hyperoxia may play a role in exacerbating these responses. Nine ex vivo ECMO circuits were tested using fresh healthy human whole blood, with two oxygen levels: 21% inspired fraction of oxygen (FiO2 ; mild hyperoxia; n = 5) and 100% FiO2 (severe hyperoxia; n = 4). Serial blood samples were taken for analysis of platelet aggregometry, leukocyte activation, inflammatory, and oxidative stress markers. ECMO resulted in reduced adenosine diphosphate- (P < .05) and thrombin receptor activating peptide-induced (P < .05) platelet aggregation, as well as increasing levels of the neutrophil activation marker, neutrophil elastase (P = .013). Additionally, levels of the inflammatory chemokine interleukin-8 were elevated (P < .05) and the activity of superoxide dismutase, a marker of oxidative stress, was increased (P = .002). Hyperoxia did not augment these responses, with no significant differences detected between mild and severe hyperoxia. Our ex vivo model of ECMO revealed that the circuit itself triggers a pro-inflammatory and oxidative stress response, however, exposure to supra-physiologic oxygen does not amplify that response. Extended-duration studies and inclusion of an endothelial component could be beneficial in characterizing longer term changes.


Asunto(s)
Oxigenación por Membrana Extracorpórea/efectos adversos , Hiperoxia/inmunología , Agregación Plaquetaria/inmunología , Plaquetas/inmunología , Humanos , Hiperoxia/sangre , Hiperoxia/diagnóstico , Inflamación/sangre , Inflamación/inmunología , Leucocitos/inmunología , Estrés Oxidativo/inmunología , Índice de Severidad de la Enfermedad
8.
Intensive Care Med Exp ; 7(1): 51, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31432279

RESUMEN

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used to manage cardiopulmonary failure refractory to conventional medical and surgical therapies. Despite advances in ECMO equipment, bleeding and thrombosis remain significant complications. While the flow rate for ECMO support is well recognized, less is known about the minimum-rate requirements and haemostasis. We investigated the relationship between different ECMO flow rates, and their effect on haemolysis and coagulation. METHODS: Ten ex-vivo ECMO circuits were tested using donated, < 24-h-old human whole blood, with two flow rates: high-flow at 4 L/min (normal adult cardiac output; n = 5) and low-flow at 1.5 L/min (weaning; n = 5). Serial blood samples were taken for analysis of haemolysis, von Willebrand factor (vWF) multimers by immunoblotting, rotational thromboelastometry, platelet aggregometry, flow cytometry and routine coagulation laboratory tests. RESULTS: Low-flow rates increased haemolysis after 2 h (p = 0.02), 4 h (p = 0.02) and 6 h (p = 0.02) and the loss of high-molecular-weight vWF multimers (p = 0.01), while reducing ristocetin-induced platelet aggregation (p = 0.0002). Additionally, clot formation times were prolonged (p = 0.006), with a corresponding decrease in maximum clot firmness (p = 0.006). CONCLUSIONS: In an ex-vivo model of ECMO, low-flow rate (1.5 L/min) altered haemostatic parameters compared to high-flow (4 L/min). Observed differences in haemolysis, ristocetin-induced platelet aggregation, high-molecular-weight vWF multimers and clot formation time suggest an increased risk of bleeding complications. Since patients are often on ECMO for protracted periods, extended-duration studies are required to characterise long-term ECMO-induced haemostatic changes.

9.
Artif Organs ; 41(10): 934-947, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28744884

RESUMEN

The common complications in heart failure patients with implanted ventricular assist devices (VADs) include hemolysis, thrombosis, and bleeding. These are linked to shear stress-induced trauma to erythrocytes, platelets, and von Willebrand factor (vWF). Novel device designs are being developed to reduce the blood trauma, which will need to undergo in vitro and in vivo preclinical testing in large animal models such as cattle, sheep, and pig. To fully understand the impact of device design and enable translation of preclinical results, it is important to identify any potential species-specific differences in the VAD-associated common complications. Therefore, the purpose of this study was to evaluate the effects of shear stress on cells and proteins in bovine, ovine, and porcine blood compared to human. Blood from different species was subjected to various shear rates (0-8000/s) using a rheometer. It was then analyzed for complete blood counts, hemolysis by the Harboe assay, platelet activation by flow cytometry, vWF structure by immunoblotting, and function by collagen binding activity ELISA (vWF : CBA). Overall, increasing shear rate caused increased total blood trauma in all tested species. This analysis revealed species-specific differences in shear-induced hemolysis, platelet activation, and vWF structure and function. Compared to human blood, porcine blood was the most resilient and showed less hemolysis, similar blood counts, but less platelet activation and less vWF damage in response to shear. Compared to human blood, sheared bovine blood showed less hemolysis, similar blood cell counts, greater platelet activation, and similar degradation of vWF structure, but less impact on its activity in response to shear. The shear-induced effect on ovine blood depended on whether the blood was collected via gravity at the abattoir or by venepuncture from live sheep. Overall, ovine abattoir blood was the least resilient in response to shear and bovine blood was the most similar to human blood. These results lay the foundations for developing blood trauma evaluation standards to enable the extrapolation of in vitro and in vivo animal data to predict safety and biocompatibility of blood-handling medical devices in humans. We advise using ovine venepuncture blood instead of ovine abattoir blood due to the greater overall damage in the latter. We propose using bovine blood for total blood damage in vitro device evaluation but multiple species could be used to create a full understanding of the complication risk profile of new devices. Further, this study highlights that choice of antibody clone for evaluating platelet activation in bovine blood can influence the interpretation of results from different studies.


Asunto(s)
Corazón Auxiliar/efectos adversos , Hemólisis , Hemorragia/etiología , Activación Plaquetaria , Trombosis/etiología , Factor de von Willebrand/análisis , Animales , Bovinos , Eritrocitos/patología , Femenino , Humanos , Masculino , Conformación Proteica , Ovinos , Especificidad de la Especie , Estrés Mecánico , Porcinos , Factor de von Willebrand/metabolismo
10.
Cytometry A ; 89(6): 565-74, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27271958

RESUMEN

Ovine and bovine blood is used heavily within the development of blood-handling medical devices, such as heart pumps (left ventricular assist devices, LVADs), for which blood cell damage needs to be monitored during in vitro testing. Hematology analyzers provide cell counts but no information about cell viability. The anthraquinone DNA dyes CyTRAK Orange™ and DRAQ7™ have practical and spectral properties rendering them suitable for multicolor assays. Compared to other DNA dyes such as Vybrant Dyecycle, CyTRAK Orange enables a faster staining protocol and does not require incubation at +37°C. Compared to traditional viability dyes such as propidium iodide and 7AAD, DRAQ7's unique spectral profile of excitation in both blue and red lasers and far-red emission enables identification of dual positive dead cell events and frees up detectors for use with other reagents. CyTRAK Orange and DRAQ7 could be used in combination with absolute counting bead standards to provide cell counts and viability but the combination of these dyes has previously only been used for microscopy on rodent cells. The purpose of this study was to evaluate the use of these dyes in combination in large animal blood samples for flow cytometry. A viability and cell counting protocol for bovine, ovine, and human leukocytes using CyTRAK Orange and DRAQ7 was prepared. Four different counting bead standards were evaluated using the Navios and FACSAria cytometers and compared to counts obtained from hematology analyzers. CyTRAK Orange successfully detected CD45(+) leukocytes in all species. The DRAQ7 single-stained dead cell counts correlated well with the CyTRAK Orange/DRAQ7 double-stained dead cell counts in human and bovine blood, but not in ovine blood, which could be related to the blood source. In conclusion, for human and bovine blood, this method works well for viability counts using different flow cytometers and bead standards. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Antraciclinas/química , Antraquinonas/química , ADN/química , Colorantes Fluorescentes/química , Inmunofenotipificación/métodos , Leucocitos/citología , Coloración y Etiquetado/métodos , Animales , Bovinos , Supervivencia Celular , Citometría de Flujo , Expresión Génica , Humanos , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Recuento de Leucocitos , Leucocitos/clasificación , Leucocitos/inmunología , Oveja Doméstica
11.
Artif Organs ; 39(2): 93-101, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25066768

RESUMEN

Implantable ventricular assist devices (VADs) have proven efficient in advanced heart failure patients as a bridge-to-transplant or destination therapy. However, VAD usage often leads to infection, bleeding, and thrombosis, side effects attributable to the damage to blood cells and plasma proteins. Measuring hemolysis alone does not provide sufficient information to understand total blood damage, and research exploring the impact of currently available pumps on a wider range of blood cell types and plasma proteins such as von Willebrand factor (vWF) is required to further our understanding of safer pump design. The extracorporeal CentriMag (Thoratec Corporation, Pleasanton, CA, USA) has a hemolysis profile within published standards of normalized index of hemolysis levels of less than 0.01 g/100 L at 100 mm Hg but the effect on leukocytes, vWF multimers, and platelets is unknown. Here, the CentriMag was tested using bovine blood (n = 15) under constant hemodynamic conditions in comparison with a static control for total blood cell counts, hemolysis, leukocyte death, vWF multimers, microparticles, platelet activation, and apoptosis. The CentriMag decreased the levels of healthy leukocytes (P < 0.006), induced leukocyte microparticles (P < 10(-5) ), and the level of high molecular weight of vWF multimers was significantly reduced in the CentriMag (P < 10(-5) ) all compared with the static treatment after 6 h in vitro testing. Despite the leukocyte damage, microparticle formation, and cleavage of vWF multimers, these results show that the CentriMag is a hemocompatible pump which could be used as a standard in blood damage assays to inform the design of new implantable blood pumps.


Asunto(s)
Corazón Auxiliar/efectos adversos , Animales , Apoptosis , Bovinos , Micropartículas Derivadas de Células/patología , Hemólisis , Humanos , Leucocitos/patología , Ensayo de Materiales , Activación Plaquetaria , Factor de von Willebrand/análisis
12.
Artif Organs ; 37(9): 793-801, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23981196

RESUMEN

Infection is a clinically relevant adverse event in patients with ventricular assist device (VAD) support. The risk of infection could be linked to a reduced immune response resulting from damage to leukocytes during VAD support. The purpose of this study was to develop an understanding of leukocyte responses during the in vitro testing of VADs by analyzing the changes to their morphology and biochemistry. The VentrAssist implantable rotary blood pump (IRBP) and RotaFlow centrifugal pump (CP) were tested in vitro under constant hemodynamic conditions. Automated hematology analysis of samples collected regularly over 25-h tests was undertaken. A new flow cytometric assay was employed to measure biochemical alteration, necrosis (7-AAD) and morphological alteration (CD45 expression) of the circulating leukocytes during the pumping process. The results of hematology analysis show the total leukocyte number and subset counts decreased over the period of in vitro tests dependent on different blood pumps. The percentage of leukocytes damaged during 6-h tests was 40.8 ± 5.7% for the VentrAssist IRBP, 17.6 ± 5.4% for the RotaFlow CP, and 2.7 ± 1.8% for the static control (all n=5). Flow cytometric monitoring of CD45 expression and forward/side scatter characteristics revealed leukocytes that were fragmented into smaller pieces (microparticles). Scanning electron microscopy and imaging flow cytometry were used to confirm this. Device developers could use these robust cellular assays to gain a better understanding of leukocyte-specific VAD performance.


Asunto(s)
Corazón Auxiliar/efectos adversos , Leucocitos/patología , Animales , Bovinos , Micropartículas Derivadas de Células/patología , Micropartículas Derivadas de Células/ultraestructura , Citometría de Flujo , Hemólisis , Antígenos Comunes de Leucocito/análisis , Recuento de Leucocitos , Leucocitos/ultraestructura
13.
Artif Organs ; 36(8): 724-30, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22882442

RESUMEN

The Harboe spectrophotometric assay is regarded as one of the safest and most reproducible methods for measuring plasma free hemoglobin (pfHb). However, there is still some ambiguity in the application of the assay when assessing the hemolytic performance of ventricular assist devices (VADs). The purpose of this study was to reexamine and compare values of pfHb obtained using different concentrations of plasma diluent (Na(2) CO(3) ) as cited by various studies such that a standard practice may be recommended for the application of the Harboe assay in the hemolytic evaluation of VADs, allowing reliable comparisons to be made between laboratories. As a means to examine the Harboe assay, a BioMedicus BPX-80 was tested using both whole blood and a washed suspension of red blood cells (RBCs). Results show that for whole blood, the pfHb may be underestimated by 13-23%, dependent upon the concentration of Na(2) CO(3) diluent solution. This trend was not observed for the washed suspension of RBCs. Furthermore, it is shown that the concentration of diluent influences the stability of a sample. The results of this study show that the problems associated with the incongruity of pfHb readings are a direct result of the precipitation of proteins from the plasma under alkaline conditions; as the molarity of the diluent controls pH, it becomes essential to use the appropriate concentration of Na(2) CO(3) diluent in order to avoid turbidity of the solution and the consequent misrepresentation of pfHb values. Such standardization is pertinent when measuring the very low levels of pfHb observed during the in vivo testing of modern ventricular assist devices.


Asunto(s)
Corazón Auxiliar/efectos adversos , Pruebas Hematológicas/métodos , Hemoglobinas/análisis , Hemólisis , Animales , Bovinos , Eritrocitos/citología , Pruebas Hematológicas/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...