Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Brain Behav Immun ; 119: 989-994, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735404

RESUMEN

BACKGROUND: Cognitive impairment is often reported after SARS-CoV-2 infection, yet evidence gaps remain. We aimed to (i) report the prevalence and characteristics of children and young people (CYP) reporting "brain fog" (i.e., cognitive impairment) 12-months post PCR-proven SARS-CoV-2 infection and determine whether differences by infection status exist and (ii) explore the prevalence of CYP experiencing cognitive impairment over a 12-month period post-infection and investigate the relationship between cognitive impairment and poor mental health and well-being, mental fatigue and sleep problems. METHODS: The Omicron CLoCk sub-study, set up in January 2022, collected data on first-time PCR-test-positive and PCR-proven reinfected CYP at time of testing and at 3-, 6- and 12-months post-testing. We describe the prevalence of cognitive impairment at 12-months, indicating when it was first reported. We characterise CYP experiencing cognitive impairment and use chi-squared tests to determine whether cognitive impairment prevalence varied by infection status. We explore the relationship between cognitive impairment and poor mental health and well-being, mental fatigue and trouble sleeping using validated scales. We examine associations at 3-, 6- and 12-months post-testing by infection status using Mann-Whitney U and chi-square tests. RESULTS: At 12-months post-testing, 7.0 % (24/345) of first-positives and 7.5 % (27/360) of reinfected CYP experienced cognitive impairment with no difference between infection-status groups (p = 0.78). The majority of these CYP experienced cognitive impairment for the first time at either time of testing or 3-months post-test (no difference between the infection-status groups; p = 0.60). 70.8 % of first-positives experiencing cognitive impairment at 12-months, were 15-to-17-years-old as were 33.3 % of reinfected CYP experiencing cognitive impairment (p < 0.01). Consistently at all time points post-testing, CYP experiencing cognitive impairment were more likely to score higher on all Strengths and Difficulties Questionnaire subscales, higher on the Chalder Fatigue sub-scale for mental fatigue, lower on the Short Warwick-Edinburgh Mental Wellbeing Scale and report more trouble sleeping. CONCLUSIONS: CYP have a fluctuating experience of cognitive impairment by 12-months post SARS-CoV-2-infection. Cognitive impairment is consistently correlated with poorer sleep, behavioural and emotional functioning over a 12-month period. Clinicians should be aware of cognitive impairment post-infection and its co-occurring nature with poorer sleep, behavioural and mental health symptoms.

2.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559177

RESUMEN

Alzheimer's disease is a neurodegenerative disorder characterized by progressive amyloid plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss, and changes in neural circuit activation that lead to cognitive decline and dementia. Early molecular and cellular disease-instigating events occur 20 or more years prior to presentation of symptoms, making them difficult to study, and for many years amyloid-ß, the aggregating peptide seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit. However, strategies targeting amyloid-ß aggregation and deposition have largely failed to produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive outcomes. However, a role still exists for amyloid-ß in the variation in an individual's immune response to early, soluble forms of aggregates, and the downstream consequences of this immune response for aberrant cellular behaviors and creation of a detrimental tissue environment that harms neuron health and causes changes in neural circuit activation. Here, we perform functional magnetic resonance imaging of awake, unanesthetized Alzheimer's disease mice to map changes in functional connectivity over the course of disease progression, in comparison to wild-type littermates. In these same individual animals, we spatiotemporally profile the immune milieu by measuring cytokines, chemokines, and growth factors across various brain regions and over the course of disease progression from pre-pathology through established cognitive deficit. We identify specific signatures of immune activation predicting hyperactivity followed by suppression of intra- and then inter-regional functional connectivity in multiple disease-relevant brain regions, following the pattern of spread of amyloid pathology.

3.
Alzheimers Dement ; 20(4): 3054-3073, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425234

RESUMEN

Wearable digital technologies capable of measuring everyday behaviors could improve the early detection of dementia-causing diseases. We conducted two systematic reviews following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to establish the evidence base for measuring navigation and gait, two everyday behaviors affected early in AD and non-AD disorders and not adequately measured in current practice. PubMed and Web of Science databases were searched for studies on asymptomatic and early-stage symptomatic individuals at risk of dementia, with the Newcastle-Ottawa Scale used to assess bias and evaluate methodological quality. Of 316 navigation and 2086 gait records identified, 27 and 83, respectively, were included in the final sample. We highlight several measures that may identify at-risk individuals, whose quantifiability with different devices mitigates the risk of future technological obsolescence. Beyond navigation and gait, this review also provides the framework for evaluating the evidence base for future digital measures of behaviors considered for early disease detection.


Asunto(s)
Demencia , Dispositivos Electrónicos Vestibles , Humanos , Marcha , Diagnóstico Precoz , Bases de Datos Factuales , Demencia/diagnóstico
4.
Alzheimers Dement ; 20(4): 2779-2793, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421123

RESUMEN

INTRODUCTION: Entorhinal cortex (EC) is the first cortical region to exhibit neurodegeneration in Alzheimer's disease (AD), associated with EC grid cell dysfunction. Given the role of grid cells in path integration (PI)-based spatial behaviors, we predicted that PI impairment would represent the first behavioral change in adults at risk of AD. METHODS: We compared immersive virtual reality (VR) PI ability to other cognitive domains in 100 asymptomatic midlife adults stratified by hereditary and physiological AD risk factors. In some participants, behavioral data were compared to 7T magnetic resonance imaging (MRI) measures of brain structure and function. RESULTS: Midlife PI impairments predicted both hereditary and physiological AD risk, with no corresponding multi-risk impairment in episodic memory or other spatial behaviors. Impairments associated with altered functional MRI signal in the posterior-medial EC. DISCUSSION: Altered PI may represent the transition point from at-risk state to disease manifestation in AD, prior to impairment in other cognitive domains.


Asunto(s)
Enfermedad de Alzheimer , Adulto , Humanos , Enfermedad de Alzheimer/patología , Corteza Entorrinal/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
5.
Pract Radiat Oncol ; 14(3): 234-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38387781

RESUMEN

PURPOSE: Non-small cell lung cancer (NSCLC) local control remains suboptimal with rates around 75%. Stereotactic body radiation therapy (SBRT) is an option for isolated local recurrences of small-volume recurrences. This study investigates the safety and efficacy of 60 Gy in 8 fractions in large-volume local recurrences. METHODS AND MATERIALS: We conducted a retrospective chart review of patients treated with salvage SBRT for NSCLC lung parenchymal recurrence between July 2013 and February 2020. Reirradiation prescribed dose was 60 Gy in 8 fractions using the SBRT technique. The primary endpoint was local control at most recent follow-up or death. Secondary endpoints included overall survival, disease-free interval, cancer-specific survival, and treatment related toxicities. RESULTS: Seven patients met inclusion criteria. Median follow up time was 38 months (18.1-72.4). Median age was 67 years (63-80). Median time to reirradiation was 18.2 months (7.3-28.6). Retreatment median ITV was 57.9 cc (15.8-344.6), and PTV median was 113.6 cc (38.3-506.9). Local control was maintained in 4 of 7 patients (57.1%). Two of the 7 patients (28.6%) remained alive. Median disease-free interval was 22.5 months (11-65). Three of 7 patients (42.9%) had grade 2 toxicities. One patient (14.3%) had a grade 3 rib/chest wall toxicity with concurrent disease recurrence invading the chest wall. CONCLUSION: This study reports that SBRT of 60 Gy in 8 fractions was delivered safely and effectively to large volume recurrent NSCLC previously treated with radiation therapy. The disease-free interval of nearly 2 years is meaningful for patients' quality of life and duration of time off systemic therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Recurrencia Local de Neoplasia , Radiocirugia , Reirradiación , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Radiocirugia/métodos , Radiocirugia/efectos adversos , Anciano , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Femenino , Estudios Retrospectivos , Anciano de 80 o más Años , Recurrencia Local de Neoplasia/radioterapia , Reirradiación/métodos
6.
J Neuroendocrinol ; : e13355, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987535

RESUMEN

Peptide receptor chemoradionuclide therapy (PRCRT), the addition of radiosensitising chemotherapy to peptide receptor radionuclide therapy (PRRT), has been used in individual centres for neuroendocrine neoplasms (NENs), but there are few data to date regarding its efficacy and safety. We conducted a systematic review to document the efficacy and side effect profile of this combination. We searched for studies including ≥5 patients with advanced NENs who received PRCRT. Major databases were searched and supplemented by handsearching of major conferences from 2019 to 2023. Data extracted included clinicopathological characteristics, trial setting and doses of chemotherapy and PRRT administered. Endpoints included overall survival (OS), progression-free survival (PFS) and adverse events (AEs); summarised qualitatively because of the marked heterogeneity in patient populations, trial designs and treatments administered. Eligible studies (24) included: 14 retrospective studies (643 patients) and 10 prospective studies (521 patients). For PRRT, most studies used 177 Lu (n = 21), with combination 177 Lu + 90 Y (n = 2), 111 In (n = 1) and 225 Ac (n = 1). Chemotherapy regimens included capecitabine (n = 8), capecitabine and temozolomide (n = 5), 5-fluorouracil (n = 4) or a mixture of regimens (n = 6). Most studies included Grade 1-2 NENs. In prospective studies, median OS exceeded 2 years in most studies (range not reached by end of follow-up-86 months). In retrospective studies, median OS ranged from 7 months to 55 months and was not reached in many studies. PFS data ranged from 31 months-not reached in prospective cohorts and from 4 months-not reached in retrospective cohorts. Grade 3/4 AEs were commonly haematological, with majority being reversible or having no ongoing clinical impact. For advanced NENs, PRCRT treatment has demonstrated promising clinical outcomes and was well tolerated, although identified studies were heterogeneous. Further randomised trial data are required to clarify the place of this combination modality in the NEN treatment paradigm.

7.
Biodes Res ; 5: 0016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849456

RESUMEN

Broad-host-range synthetic biology is an emerging frontier that aims to expand our current engineerable domain of microbial hosts for biodesign applications. As more novel species are brought to "model status," synthetic biologists are discovering that identically engineered genetic circuits can exhibit different performances depending on the organism it operates within, an observation referred to as the "chassis effect." It remains a major challenge to uncover which genome-encoded and biological determinants will underpin chassis effects that govern the performance of engineered genetic devices. In this study, we compared model and novel bacterial hosts to ask whether phylogenomic relatedness or similarity in host physiology is a better predictor of genetic circuit performance. This was accomplished using a comparative framework based on multivariate statistical approaches to systematically demonstrate the chassis effect and characterize the performance dynamics of a genetic inverter circuit operating within 6 Gammaproteobacteria. Our results solidify the notion that genetic devices are strongly impacted by the host context. Furthermore, we formally determined that hosts exhibiting more similar metrics of growth and molecular physiology also exhibit more similar performance of the genetic inverter, indicating that specific bacterial physiology underpins measurable chassis effects. The result of this study contributes to the field of broad-host-range synthetic biology by lending increased predictive power to the implementation of genetic devices in less-established microbial hosts.

8.
Curr Biol ; 33(21): 4650-4661.e7, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37827151

RESUMEN

Path integration (PI) is impaired early in Alzheimer's disease (AD) but reflects multiple sub-processes that may be differentially sensitive to AD. To characterize these sub-processes, we developed a novel generative linear-angular model of PI (GLAMPI) to fit the inbound paths of healthy elderly participants performing triangle completion, a popular PI task, in immersive virtual reality with real movement. The model fits seven parameters reflecting the encoding, calculation, and production errors associated with inaccuracies in PI. We compared these parameters across younger and older participants and patients with mild cognitive impairment (MCI), including those with (MCI+) and without (MCI-) cerebrospinal fluid biomarkers of AD neuropathology. MCI patients showed overestimation of the angular turn in the outbound path and more variable inbound distances and directions compared with healthy elderly. MCI+ were best distinguished from MCI- patients by overestimation of outbound turns and more variable inbound directions. Our results suggest that overestimation of turning underlies the PI errors seen in patients with early AD, indicating specific neural pathways and diagnostic behaviors for further research.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Pruebas Neuropsicológicas , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Biomarcadores
9.
Cell Mol Bioeng ; 16(4): 405-421, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37811007

RESUMEN

Introduction: Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease (AD) brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in AD patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods: We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of AD at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results: We identified a pattern of up-regulated IFNγ, IP-10/CXCL10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions: We identify a pattern of cytokine secretion predictive of progressing amyloid-ß pathology in the 5xFAD mouse model of AD that reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in AD. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00782-y.

10.
ACS Sens ; 8(8): 3116-3126, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37506391

RESUMEN

Parkinson's disease (PD) currently affects more than 1 million people in the US alone, with nearly 8.5 million suffering from the disease worldwide, as per the World Health Organization. However, there remains no fast, pain-free, and effective method of screening for the disease in the ageing population, which also happens to be the most susceptible to this neurodegenerative disease. αSynuclein (αSyn) is a promising PD biomarker, demonstrating clear delineations between levels of the αSyn monomer and the extent of αSyn aggregation in the saliva of PD patients and healthy controls. In this work, we have demonstrated a laboratory prototype of a soft fluidics integrated organic electrolyte-gated field-effect transistor (OEGFET) aptasensor platform capable of quantifying levels of αSyn aggregation in saliva. The aptasensor relies on a recently reported synthetic aptamer which selectively binds to αSyn monomer as the bio-recognition molecule within the integrated fluidic channel of the biosensor. The produced saliva sensor is label-free, fast, and reusable, demonstrating good selectivity only to the target molecule in its monomer form. The novelty of these devices is the fully isolated organic semiconductor, which extends the shelf life, and the novel fully integrated soft microfluidic channels, which simplify saliva loading and testing. The OEGFET aptasensor has a limit of detection of 10 fg/L for the αSyn monomer in spiked saliva supernatant solutions, with a linear range of 100 fg/L to 10 µg/L. The linear range covers the physiological range of the αSyn monomer in the saliva of PD patients. Our biosensors demonstrate a desirably low limit of detection, an extended linear range, and fully integrated microchannels for saliva sample handling, making them a promising platform for non-invasive point-of-care testing of PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/análisis , Enfermedad de Parkinson/diagnóstico , Saliva/química
11.
bioRxiv ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066287

RESUMEN

Introduction: Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in Alzheimer's disease patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods: We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of Alzheimer's disease at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results: We identified a pattern of up-regulated IFNγ, IP-10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions: An Alzheimer's disease-specific pattern of cytokine secretion reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in Alzheimer's disease.

12.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778428

RESUMEN

The entorhinal cortex (EC) is the first cortical region to exhibit neurodegeneration in Alzheimer's disease (AD), associated with EC grid cell dysfunction. Given the role of grid cells in path integration, we predicted that path integration impairment would represent the first behavioural change in adults at-risk of AD. Using immersive virtual reality, we found that midlife path integration impairments predicted both hereditary and physiological AD risk, with no corresponding impairment on tests of episodic memory or other spatial behaviours. Impairments related to poorer angular estimation and were associated with hexadirectional grid-like fMRI signal in the posterior-medial EC. These results indicate that altered path integration may represent the transition point from at-risk state to disease onset in AD, prior to impairment in other cognitive domains.

13.
J Neurochem ; 165(4): 536-549, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36762973

RESUMEN

Apolipoprotein E (APOE) is a lipid transporter produced predominantly by astrocytes in the brain. The ε4 variant of APOE (APOE4) is the strongest and most common genetic risk factor for Alzheimer's disease (AD). Although the molecular mechanisms of this increased risk are unclear, APOE4 is known to alter immune signaling and lipid and glucose metabolism. Astrocytes provide various forms of support to neurons, including regulating neuronal metabolism and immune responses through cytokine signaling. Changes in astrocyte function because of APOE4 may therefore decrease neuronal support, leaving neurons more vulnerable to stress and disease insults. To determine whether APOE4 alters astrocyte neuronal support functions, we measured glycolytic and oxidative metabolism of neurons treated with conditioned media from APOE4 or APOE3 (the common, risk-neutral variant) primary astrocyte cultures. We found that APOE4 neurons treated with conditioned media from resting APOE4 astrocytes had similar metabolism to APOE3 neurons treated with media from resting APOE3 astrocytes, but treatment with astrocytic conditioned media from astrocytes challenged with amyloid-ß (Aß), a key pathological protein in AD, caused APOE4 neurons to increase their basal mitochondrial and glycolytic metabolic rates more than APOE3 neurons. These changes were not because of differences in astrocytic lactate production or glucose utilization, but instead correlated with increased glycolytic ATP production and a lack of cytokine secretion in response to Aß. Additionally, we identified that astrocytic cytokine signatures could predict basal metabolism of neurons treated with the astrocytic conditioned media. Together, these findings suggest that in the presence of Aß, APOE4 astrocytes alter immune and metabolic functions that result in a compensatory increase in neuronal metabolic stress.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Animales , Humanos , Apolipoproteína E4/genética , Astrocitos/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Medios de Cultivo Condicionados/farmacología , Ratones Transgénicos , Células Cultivadas , Apolipoproteínas E/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo
14.
Neurobiol Aging ; 123: 154-169, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572594

RESUMEN

The ε4 variant of apolipoprotein E (APOE) is the strongest and most common genetic risk factor for Alzheimer's disease (AD). While the mechanism of conveyed risk is incompletely understood, promotion of inflammation, dysregulated metabolism, and protein misfolding and aggregation are contributors to accelerating disease. Here we determined the concurrent effects of systemic metabolic changes and brain inflammation in young (3-month-old) and aged (18-month-old) male and female mice carrying the APOE4 gene. Using functional metabolic assays alongside multivariate modeling of hippocampal cytokine levels, we found that brain cytokine signatures are predictive of systemic metabolic outcomes, independent of AD proteinopathies. Male and female mice each produce different cytokine signatures as they age and as their systemic metabolic phenotype declines, and these signatures are APOE genotype dependent. Ours is the first study to identify a quantitative and predictive link between systemic metabolism and specific pathological cytokine signatures in the brain. Our results highlight the effects of APOE4 beyond the brain and suggest the potential for bi-directional influence of risk factors in the brain and periphery.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Masculino , Femenino , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Citocinas/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Genotipo , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E2/genética
15.
Orbit ; 42(2): 192-195, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34493154

RESUMEN

A 60-year-old man with longstanding bilateral asymmetrical ptosis presented with a partial third nerve palsy. His diplopia improved following an ice pack test. He did not report any symptoms related to the coronavirus disease 2019 (COVID-19), and nasopharyngeal swab was negative. Initial head imaging and blood work-up were normal except for a high titer of anti-GQ1b antibodies. The patient was subsequently diagnosed with acute ophthalmoparesis without ataxia which is part of the anti-GQ1b antibody syndrome spectrum. He made a spontaneous recovery over the following months without the need for immunotherapy. Clinical features, pathophysiology and a review of the literature are discussed herein. It is important to consider anti-GQ1b antibody syndrome in patients with symptoms of diplopia, ptosis or suspected ocular myasthenia.


Asunto(s)
COVID-19 , Miastenia Gravis , Oftalmoplejía , Masculino , Humanos , Persona de Mediana Edad , Diplopía/diagnóstico , Diplopía/etiología , COVID-19/complicaciones , Síndrome , Miastenia Gravis/complicaciones , Oftalmoplejía/diagnóstico , Oftalmoplejía/etiología
16.
Brain Commun ; 4(6): fcac267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36349119

RESUMEN

Establishing preclinical models of Alzheimer's disease that predict clinical outcomes remains a critically important, yet to date not fully realized, goal. Models derived from human cells offer considerable advantages over non-human models, including the potential to reflect some of the inter-individual differences that are apparent in patients. Here we report an approach using induced pluripotent stem cell-derived cortical neurons from people with early symptomatic Alzheimer's disease where we sought a match between individual disease characteristics in the cells with analogous characteristics in the people from whom they were derived. We show that the response to amyloid-ß burden in life, as measured by cognitive decline and brain activity levels, varies between individuals and this vulnerability rating correlates with the individual cellular vulnerability to extrinsic amyloid-ß in vitro as measured by synapse loss and function. Our findings indicate that patient-induced pluripotent stem cell-derived cortical neurons not only present key aspects of Alzheimer's disease pathology but also reflect key aspects of the clinical phenotypes of the same patients. Cellular models that reflect an individual's in-life clinical vulnerability thus represent a tractable method of Alzheimer's disease modelling using clinical data in combination with cellular phenotypes.

17.
J Parkinsons Dis ; 12(8): 2339-2352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278360

RESUMEN

The contribution of the microbiota to induce gastrointestinal inflammation is hypothesized to be a key component of alpha-synuclein (aSyn) aggregation within the gastrointestinal (GI) tract in the pathological progression of Parkinson's disease (PD). The function of the GI tract is governed by a system of neurons that form part of the enteric nervous system (ENS). The ENS hosts  100-500 million nerve cells within two thin layers lining the GI tract. The gut-brain axis (GBA) is the major communication pathway between the ENS and the central nervous system. It has become increasingly clear that the microbiota in the gut are key regulators of GBA function and help to maintain homeostasis in the immune and endocrine systems. The GBA may act as a possible etiological launching pad for the pathogenesis of age-related neurodegenerative diseases, such as PD, because of an imbalance in the gut microbiota. PD is a multi-faceted illness with multiple biological, immunological, and environmental factors contributing to its pathological progression. Interestingly, individuals with PD have an altered gut microbiota compared to healthy individuals. However, there is a lack of literature describing the relationship between microbiota composition in the gut and symptom progression in PD patients. This review article examines how the pathology and symptomology of PD may originate from dysregulated signaling in the ENS. We then discuss by targeting the imbalance within the gut microbiota such as prebiotics and probiotics, some of the prodromal symptoms might be alleviated, possibly curtailing the pathological spread of aSyn and ensuing debilitating motor symptoms.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Microbioma Gastrointestinal/fisiología , Homeostasis , Sistema Nervioso Central/metabolismo , Sistema Nervioso Entérico/metabolismo
18.
Mult Scler ; 28(12): 1913-1926, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946107

RESUMEN

BACKGROUND: Cognitive impairment affects 50%-75% of people with secondary progressive multiple sclerosis (PwSPMS). Improving our ability to predict cognitive decline may facilitate earlier intervention. OBJECTIVE: The main aim of this study was to assess the relationship between longitudinal changes in cognition and baseline serum neurofilament light chain (sNfL) in PwSPMS. In a multi-modal analysis, MRI variables were additionally included to determine if sNfL has predictive utility beyond that already established through MRI. METHODS: Participants from the MS-STAT trial underwent a detailed neuropsychological test battery at baseline, 12 and 24 months. Linear mixed models were used to assess the relationships between cognition, sNfL, T2 lesion volume (T2LV) and normalised regional brain volumes. RESULTS: Median age and Expanded Disability Status Score (EDSS) were 51 and 6.0. Each doubling of baseline sNfL was associated with a 0.010 [0.003-0.017] point per month faster decline in WASI Full Scale IQ Z-score (p = 0.008), independent of T2LV and normalised regional volumes. In contrast, lower baseline volume of the transverse temporal gyrus was associated with poorer current cognitive performance (0.362 [0.026-0.698] point reduction per mL, p = 0.035), but not change in cognition. The results were supported by secondary analyses on individual cognitive components. CONCLUSION: Elevated sNfL is associated with faster cognitive decline, independent of T2LV and regional normalised volumes.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Humanos , Filamentos Intermedios/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/complicaciones , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Proteínas de Neurofilamentos
19.
Hippocampus ; 32(9): 660-678, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35916343

RESUMEN

Pathological changes in the medial temporal lobe (MTL) are found in the early stages of Alzheimer's disease (AD) and aging. The earliest pathological accumulation of tau colocalizes with the areas of the MTL involved in object processing as part of a wider anterolateral network. Here, we sought to assess the diagnostic potential of memory for object locations in iVR environments in individuals at high risk of AD dementia (amnestic mild cognitive impairment [aMCI] n = 23) as compared to age-related cognitive decline. Consistent with our primary hypothesis that early AD would be associated with impaired object location, aMCI patients exhibited impaired spatial feature binding. Compared to both older (n = 24) and younger (n = 53) controls, aMCI patients, recalled object locations with significantly less accuracy (p < .001), with a trend toward an impaired identification of the object's correct context (p = .05). Importantly, these findings were not explained by deficits in object recognition (p = .6). These deficits differentiated aMCI from controls with greater accuracy (AUC = 0.89) than the standard neuropsychological tests. Within the aMCI group, 16 had CSF biomarkers indicative of their likely AD status (MCI+ n = 9 vs. MCI- n = 7). MCI+ showed lower accuracy in the object-context association than MCI- (p = .03) suggesting a selective deficit in object-context binding postulated to be associated with anterior-temporal areas. MRI volumetric analysis across healthy older participants and aMCI revealed that test performance positively correlates with lateral entorhinal cortex volumes (p < .05) and hippocampus volumes (p < .01), consistent with their hypothesized role in binding contextual and spatial information with object identity. Our results indicate that tests relying on the anterolateral object processing stream, and in particular requiring successful binding of an object with spatial information, may aid detection of pre-dementia AD due to the underlying early spread of tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/diagnóstico por imagen , Demencia/complicaciones , Corteza Entorrinal/diagnóstico por imagen , Corteza Entorrinal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
20.
PLoS One ; 17(8): e0272297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35930583

RESUMEN

The diagnosis of type 1 diabetes mellitus (DM) in humans is associated with high altitude, few sunshine hours, cold climate, and winter. The goals of this study were to investigate seasonal and geographic patterns of DM diagnosis in United States of America (USA) dogs with juvenile and mature onset DM. Data were collected by means of an online survey widely distributed in the USA through breed clubs, academic veterinary institutions, private veterinary referral practices, social media outlets, and the American Kennel Club. Juvenile DM (JDM) and mature onset DM were defined as DM with an age of onset <365 days and DM with an age of onset ≥365 days, respectively. Meteorological seasons were defined as: winter from December through February, spring from March through May, summer from June through August, and fall from September through November. Four geographic regions were also defined as the West, North, South, and Central regions of the USA. Nonoverlapping 95% confidence intervals (CI) for season, geographic region, and breed specific proportions of dogs with JDM were considered statistically significantly different. The study included 933 dogs with mature onset DM and 27 dogs with JDM. Dogs were diagnosed with DM significantly more in the winter and northern USA compared to all other seasons and all other geographic regions, respectively. The prevalence of JDM among dogs with DM was 2.8%. The proportion of dogs with JDM among pure breeds was not significantly different than the proportion of JDM in mixed breed dogs. It is concluded that winter and cold climate could be shared environmental factors influencing DM expression in dogs and humans. Additionally, pure breed dogs do not appear to be at increased risk for JDM compared to mixed breed dogs, indicating that factors other than genetics could influence spontaneous JDM development in dogs.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Animales , Cruzamiento , Perros , Geografía , Humanos , Estaciones del Año , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...