Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696732

RESUMEN

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Asunto(s)
Arginina , Nanopartículas , Nanopartículas/química , Adsorción , Arginina/química , Concentración de Iones de Hidrógeno , Polimerizacion , Dióxido de Silicio/química , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntesis química
2.
Plant Physiol Biochem ; 208: 108485, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461755

RESUMEN

Duckweed, a floating macrophyte, has attracted interest in various fields such as animal feedstocks and bioenergy productions. Its enriched nutritional content and rapid growth rate make it particularly promising. However, common laboratory cultures of duckweed often experience fronds layering, diminishing the efficiency of sunlight capturing due to limited surface area on conventional cultivation platforms. In this work, we aimed to address the issue of fronds layering by introducing a novel cultivation platform - a superhydrophobic coated acrylic sheet. The sheet was prepared by spray-coating a suspension of beeswax and ethanol, and its effectiveness was evaluated by comparing the growth performance of giant duckweed, Spirodela polyrhiza, on this platform with that on a modified version. The superhydrophobic coated acrylic sheet (SHPA) and its variant with a metal mesh added (SHPAM) were employed as growing platforms, with a glass jar serving as the control. The plantlets were grown for 7 days with similar growth conditions under low light stress (25 µmol/m2/s). SHPAM demonstrated superior growth performance, achieving a mass gain of 102.12 ± 17.18 %, surpassing both SHPA (89.67 ± 14.97 %) and the control (39.26 ± 8.94 %). For biochemical compositions, SHPAM outperformed in chlorophyll content, protein content and lipid content. The values obtained were 1.021 ± 0.076 mg/g FW, 14.59 ± 0.58 % DW and 6.21 ± 0.75 % DW respectively. Therefore, this work proved that incorporation of superhydrophobic coatings on a novel cultivation platform significantly enhanced the biomass production of S. polyrhiza. Simultaneously, the biochemical compositions of the duckweeds were well-maintained, showcasing the potential of this approach for optimized duckweed cultivation.


Asunto(s)
Araceae , Luz , Animales , Biomasa , Interacciones Hidrofóbicas e Hidrofílicas
3.
Clin Nutr ESPEN ; 59: 118-125, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38220364

RESUMEN

INTRODUCTION: Variation in access to parenteral nutrition (PN) in patients with intestinal failure secondary to malignant bowel obstruction (MBO) exists due to differing practice, beliefs and resource access. We aimed to examine differences in nutritional care pathways and outcomes, by referral to nutrition team for PN in patients with MBO. METHODS: This is a retrospective cohort study of MBO adults admitted to eight UK hospitals within a year and 1 year follow-up. Demographic, nutritional and medical data were analysed by comparing patients referred (R) or not referred (NR) for PN. Differences between groups were tested by Kruskal-Wallis, Chi-Squared tests and multi-level regression and survival using Cox regression. RESULTS: 232 patients with 347 MBO admissions [median 66yr, (IQR: 55-74yrs), 67 % female], 79/232 patients were referred for PN (R group). Underlying primary malignancies of gynaecological and gastrointestinal origin predominated (71 %) and 78 % with metastases. Those in the NR group were found to be older, weigh more on admission, and more likely to be treated conservatively compared to those in the R group. For 123 (35 %) admissions, patients were referred to a nutrition team, and for 204 (59 %) admissions, patients were reviewed by a dietician. Multi-disciplinary team discussion and dietetic contact were more likely to occur in the R group-123/347 admissions (R vs NR group: 27 % vs. 7 %, P = 0.001; 95 % vs 39 %, P < 0.0001). Median admission weight loss was 8 % (IQR: 0 to 14). 43/123 R group admissions received inpatient PN only, with 32 patients discharged or already established on home parenteral nutrition. Overall survival was 150 days (126-232) with no difference between R/NR groups. CONCLUSION: In this multi-centre study evaluating nutritional care management of patients with malignant bowel obstruction, only 1 in 3 admissions resulted in a referral to the nutrition team for PN, and just over half were reviewed by a dietician. Further prospective research is required to evaluate possible consequences of these differential care pathways on clinical outcomes and quality of life.


Asunto(s)
Obstrucción Intestinal , Neoplasias , Nutrición Parenteral en el Domicilio , Femenino , Humanos , Masculino , Vías Clínicas , Obstrucción Intestinal/etiología , Obstrucción Intestinal/terapia , Neoplasias/complicaciones , Neoplasias/terapia , Calidad de Vida , Estudios Retrospectivos , Persona de Mediana Edad , Anciano
4.
Electrophoresis ; 45(5-6): 357-368, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044267

RESUMEN

The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.


Asunto(s)
Compuestos Férricos , Nanosferas , Nanotubos , Microesferas , Poliestirenos/química , Nanotubos/química
5.
Langmuir ; 40(1): 734-743, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38128476

RESUMEN

A deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with z-average diameters ranging from 32 to 238 nm. These well-defined nanoparticles enable a systematic investigation of the effect of the nanoparticle size and composition on the drying kinetics of aqueous aerosol droplets (20-28 µm radius) and the final morphology of the resulting microparticles. A comparative kinetics electrodynamic balance was used to obtain evaporation profiles for 10 examples of nanoparticles at a relative humidity (RH) of 0, 45, or 65%. Nanoparticles comprising the same core block with mean diameters of 32, 79, and 214 nm were used to produce microparticles, which were dried under different RH conditions in a falling droplet column. Scanning electron microscopy was used to examine how the drying kinetics influenced the final microparticle morphology. For dilute droplets, the chemical composition of the nanoparticles had no effect on the evaporation rate. However, employing smaller nanoparticles led to the formation of dried microparticles with a greater degree of buckling.

6.
ACS Appl Mater Interfaces ; 15(46): 54039-54049, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944021

RESUMEN

Phenanthrene is the simplest example of a polycyclic aromatic hydrocarbon (PAH). Herein, we exploit its relatively low melting point (101 °C) to prepare microparticles from molten phenanthrene droplets by conducting high-shear homogenization in a 3:1 water/ethylene glycol mixture at 105 °C using poly(N-vinylpyrrolidone) as a non-ionic polymeric emulsifier. Scanning electron microscopy studies confirm that this protocol produces polydisperse phenanthrene microparticles with a spherical morphology: laser diffraction studies indicate a volume-average diameter of 25 ± 21 µm. Such projectiles are fired into an aluminum foil target at 1.87 km s-1 using a two-stage light gas gun. Interestingly, the autofluorescence exhibited by phenanthrene aids analysis of the resulting impact craters. More specifically, it enables assessment of the spatial distribution of any surviving phenanthrene in the vicinity of each crater. Furthermore, these phenanthrene microparticles can be coated with an ultrathin overlayer of polypyrrole, which reduces their autofluorescence. In principle, such core-shell microparticles should be useful for assessing the extent of thermal ablation that is likely to occur when they are fired into aerogel targets. Accordingly, polypyrrole-coated microparticles were fired into an aerogel target at 2.07 km s-1. Intact microparticles were identified at the end of carrot tracks and their relatively weak autofluorescence suggests that thermal ablation during aerogel capture did not completely remove the polypyrrole overlayer. Thus, these new core-shell microparticles appear to be useful model projectiles for assessing the extent of thermal processing that can occur in such experiments, which have implications for the capture of intact PAH-based dust grains originating from cometary tails or from plumes emanating from icy satellites (e.g., Enceladus) in future space missions.

7.
Mol Biotechnol ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37651079

RESUMEN

Membrane distillation (MD) has lower operating temperature and potential to recycle waste heat for desalination which catches much attention of the researchers in the recent years. However, the biofouling is still a challenging hurdle to be overcome for such applications. The microbial growth rate, secretion and biofilm formation are sensitive to heat. Membrane distillation is a thermally driven separation, so the increase of temperature in the seawater feed could influence the extent of biofouling on the unit parts. In this review, we present the effect of temperature on algal growth, the range of temperature the microbes, marine algae and planktons able to survive and the changes to those planktons once exceed the critical temperature. Thermal effect on the biofilm, its composition and properties are discussed as well, with association of the biofilm secreting microbes, but the study related to membrane distillation unit seems to be lacking and MD biofouling factors are not fully understood. Characterization of the algae, biofilm and EPS that govern biofouling are discussed. This information not only will help in designing future studies to fill up the knowledge gaps in biofouling of membrane distillation, but also to some extent, assist in pointing out possible fouling factors and predicting the degree of biofouling in the membrane distillation unit.

8.
ACS Infect Dis ; 9(7): 1408-1423, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37279282

RESUMEN

Traditional antibacterial screens rely on growing bacteria in nutrient-replete conditions which are not representative of the natural environment or sites of infection. Instead, screening in more physiologically relevant conditions may reveal novel activity for existing antibiotics. Here, we screened a panel of antibiotics reported to lack activity against the opportunistic Gram-negative bacterium, Pseudomonas aeruginosa, under low-nutrient and low-iron conditions, and discovered that the glycopeptide vancomycin inhibited the growth of P. aeruginosa at low micromolar concentrations through its canonical mechanism of action, disruption of peptidoglycan crosslinking. Spontaneous vancomycin-resistant mutants underwent activating mutations in the sensor kinase of the two-component CpxSR system, which induced cross-resistance to almost all classes of ß-lactams, including the siderophore antibiotic cefiderocol. Other mutations that conferred vancomycin resistance mapped to WapR, an α-1,3-rhamnosyltransferase involved in lipopolysaccharide core biosynthesis. A WapR P164T mutant had a modified LPS profile compared to wild type that was accompanied by increased susceptibility to select bacteriophages. We conclude that screening in nutrient-limited conditions can reveal novel activity for existing antibiotics and lead to discovery of new and impactful resistance mechanisms.


Asunto(s)
Pseudomonas aeruginosa , Vancomicina , Vancomicina/farmacología , Antibacterianos/farmacología , Glicopéptidos , Nutrientes
9.
J Shoulder Elbow Surg ; 32(9): 1857-1866, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37263480

RESUMEN

BACKGROUND: Patients undergoing a total shoulder arthroplasty (TSA) through a deltopectoral approach will require repair of the subscapularis tendon. There are no universal postoperative guidelines for rehabilitation of the subscapularis specifically. We hypothesize that the addition of a subscapularis-specific regimen will result in improved subscapularis strength and function. METHODS: Adult patients undergoing anatomic TSA for the treatment of primary glenohumeral osteoarthritis were included. Patients were randomized into either the traditional rehabilitation (TR) control group or the subscapularis rehabilitation (SR) group, which consisted of the traditional therapy along with early and additional subscapularis exercises. Baseline demographics, patient-reported outcome measures (PROMs), range of motion (ROM), provocative tests, and subscapularis strength using a handheld dynamometer were measured preoperatively at the initial clinic visit (ICV) as well as 3 months, 6 months, and 1 year postoperatively. The primary outcome of interest was a comparison of subscapularis strength between cohorts relative to preoperative baseline, whereas secondary outcomes were functional, ROM, and PROMs. RESULTS: Sixty-six patients were included in the final analysis (32 TR vs. 34 SR). There were no statistically significant differences between cohorts at the ICV with regard to demographics, baseline subscapularis strength, functional testing, or PROMs. All postoperative time points demonstrated similar subscapularis strength testing between TR and SR groups (P > .05). Additionally, peak and average subscapularis strength testing at 3, 6, and 12 months postoperatively were similar to baseline ICV testing in both groups. Both groups demonstrated improvements across several provocative tests, ROM, and PROM outcome metrics at every postoperative time point as compared to baseline ICV values (P < .05). CONCLUSIONS: Patients undergoing anatomic TSA return to baseline internal rotation strength by 3 months postoperatively and demonstrate significant improvements in function, ROM, and several patient-reported outcome measures. The addition of early and focused subscapularis strengthening exercises does not appear to significantly impact any outcomes when compared to traditional rehabilitation programs.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Osteoartritis , Articulación del Hombro , Adulto , Humanos , Manguito de los Rotadores/cirugía , Articulación del Hombro/cirugía , Estudios Prospectivos , Osteoartritis/cirugía , Rango del Movimiento Articular , Resultado del Tratamiento
10.
J Colloid Interface Sci ; 649: 364-371, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37354793

RESUMEN

HYPOTHESIS: Diffusiophoresis of colloidal latex particles has been reported for molecular anions and cations of comparable size. In the present study, this phenomenon is observed for two types of charged colloids acting as multivalent electrolyte: (i) anionic charge-stabilised silica nanoparticles or (ii) minimally-charged sterically-stabilised diblock copolymer nanoparticles. EXPERIMENTS: Using a Hele-Shaw cell, a thin layer of relatively large latex particles is established within a sharp concentration gradient of nanoparticles by sequential filling with water, latex particles and nanoparticles. Asymmetric diffusion is observed, which provides strong evidence for diffusiophoresis. Quantification involves turbidity measurements from backlit images. FINDINGS: The latex particles diffuse across a concentration gradient of charged nanoparticles and the latex concentration front scales approximately with time1/2. Moreover, the latex particle flux is inversely proportional to the concentration of background salt, confirming electrostatically-driven motion. These observations are consistent with theory recently developed to account for diffusiophoretic motion driven by multivalent ions.

11.
Ultrason Imaging ; 45(4): 175-186, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129257

RESUMEN

This study demonstrates the implementation of a shear wave reconstruction algorithm that enables concurrent acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) of prostate cancer and zonal anatomy. The combined ARFI/SWEI sequence uses closely spaced push beams across the lateral field of view and simultaneously tracks both on-axis (within the region of excitation) and off-axis (laterally offset from the excitation) after each push beam. Using a large number of push beams across the lateral field of view enables the collection of higher signal-to-noise ratio (SNR) shear wave data to reconstruct the SWEI volume than is typically acquired. The shear wave arrival times were determined with cross-correlation of shear wave velocity signals in two dimensions after 3-D directional filtering to remove reflection artifacts. To combine data from serially interrogated lateral push locations, arrival times from different pushes were aligned by estimating the shear wave propagation time between push locations. Shear wave data acquired in an elasticity lesion phantom and reconstructed using this algorithm demonstrate benefits to contrast-to-noise ratio (CNR) with increased push beam density and 3-D directional filtering. Increasing the push beam spacing from 0.3 to 11.6 mm (typical for commercial SWEI systems) resulted in a 53% decrease in CNR. In human in vivo data, this imaging approach enabled high CNR (1.61-1.86) imaging of histologically-confirmed prostate cancer. The in vivo images had improved spatial resolution and CNR and fewer reflection artifacts as a result of the high push beam density, the high shear wave SNR, the use of multidimensional directional filtering, and the combination of shear wave data from different push beams.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Fantasmas de Imagen , Relación Señal-Ruido , Diagnóstico por Imagen de Elasticidad/métodos , Algoritmos
12.
Proc Natl Acad Sci U S A ; 120(16): e2221253120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37043535

RESUMEN

The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.


Asunto(s)
Antibacterianos , Sideróforos , Sideróforos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Ligandos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Hierro/metabolismo , Transducción de Señal , Pseudomonas aeruginosa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo
13.
Blood Cancer Discov ; 4(3): 180-207, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36763002

RESUMEN

Acute myeloid leukemia (AML) is fueled by leukemic stem cells (LSC) whose determinants are challenging to discern from hematopoietic stem cells (HSC) or uncover by approaches focused on general cell properties. We have identified a set of RNA-binding proteins (RBP) selectively enriched in human AML LSCs. Using an in vivo two-step CRISPR-Cas9 screen to assay stem cell functionality, we found 32 RBPs essential for LSCs in MLL-AF9;NrasG12D AML. Loss-of-function approaches targeting key hit RBP ELAVL1 compromised LSC-driven in vivo leukemic reconstitution, and selectively depleted primitive malignant versus healthy cells. Integrative multiomics revealed differentiation, splicing, and mitochondrial metabolism as key features defining the leukemic ELAVL1-mRNA interactome with mitochondrial import protein, TOMM34, being a direct ELAVL1-stabilized target whose repression impairs AML propagation. Altogether, using a stem cell-adapted in vivo CRISPR screen, this work demonstrates pervasive reliance on RBPs as regulators of LSCs and highlights their potential as therapeutic targets in AML. SIGNIFICANCE: LSC-targeted therapies remain a significant unmet need in AML. We developed a stem-cell-adapted in vivo CRISPR screen to identify key LSC drivers. We uncover widespread RNA-binding protein dependencies in LSCs, including ELAVL1, which we identify as a novel therapeutic vulnerability through its regulation of mitochondrial metabolism. This article is highlighted in the In This Issue feature, p. 171.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/uso terapéutico , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo
14.
Environ Res ; 224: 115544, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822535

RESUMEN

Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.


Asunto(s)
Araceae , Clorofila , Clorofila/metabolismo , Clorofila/farmacología , Ceras/metabolismo , Ceras/farmacología , Interacciones Hidrofóbicas e Hidrofílicas
15.
Angew Chem Int Ed Engl ; 62(10): e202218397, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651475

RESUMEN

Epoxy-functional sterically-stabilized diblock copolymer nanoparticles (ca. 27 nm) are prepared via RAFT dispersion polymerization in mineral oil. Nanoparticle adsorption onto stainless steel is examined using a quartz crystal microbalance. Incorporating epoxy groups within the steric stabilizer chains results in a two-fold increase in the adsorbed amount, Γ, at 20 °C (7.6 mg m-2 ) compared to epoxy-core functional nanoparticles (3.7 mg m-2 ) or non-functional nanoparticles (3.8 mg m-2 ). A larger difference in Γ is observed at 40 °C; this suggests chemical adsorption of the nanoparticles rather than merely physical adsorption. A remarkable near five-fold increase in Γ is observed for ca. 50 nm epoxy-functional nanoparticles compared to non-functional nanoparticles (31.3 vs. 6.4 mg m-2 , respectively). Tribological studies confirm that chemical adsorption of the latter epoxy-functional nanoparticles leads to a significant reduction in friction between 60 °C and 120 °C.

16.
mBio ; 14(1): e0314922, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36507834

RESUMEN

Iron is essential for many biological functions in bacteria, but its poor solubility is a limiting factor for growth. Bacteria produce siderophores, soluble natural products that bind iron with high affinity, to overcome this challenge. Siderophore-iron complexes return to the cell through specific outer membrane transporters. The opportunistic pathogen Pseudomonas aeruginosa makes multiple transporters that recognize its own siderophores, pyoverdine and pyochelin, and xenosiderophores produced by other bacteria or fungi, which gives it a competitive advantage. Some antibiotics exploit these transporters to bypass the membrane to reach their intracellular targets-including the thiopeptide antibiotic, thiostrepton (TS), which uses the pyoverdine transporters FpvA and FpvB to cross the outer membrane. Here, we assessed TS susceptibility in the presence of various siderophores and discovered that ferrichrome and ferrioxamine B antagonized TS uptake via FpvB. Unexpectedly, we found that FpvB transports ferrichrome and ferrioxamine B with higher affinity than pyoverdine. Site-directed mutagenesis of FpvB coupled with competitive growth inhibition and affinity label quenching studies suggested that the siderophores and antibiotic share a binding site in an aromatic pocket formed by the plug and barrel domains but have differences in their binding mechanism and molecular determinants for uptake. This work describes an alternative uptake pathway for ferrichrome and ferrioxamine B in P. aeruginosa and emphasizes the promiscuity of siderophore transporters, with implications for Gram-negative antibiotic development via the Trojan horse approach. IMPORTANCE Gram-negative bacteria express a variety of outer membrane transporters to import critical nutrients such as iron. Due to its insolubility, iron is taken up while bound to small-molecule chelators called siderophores. Pseudomonas aeruginosa takes up its own siderophores pyoverdine and pyochelin but can also steal siderophores produced by other bacteria and fungi, giving it a competitive advantage in iron-limited environments. Here, we used whole-cell reporter assays to show that FpvB, originally identified as a secondary transporter for pyoverdine, transports the chemically distinct fungal siderophore ferrichrome and the bacterial siderophore ferrioxamine B with high affinity. FpvB is also used by thiopeptide antibiotic thiostrepton for uptake. We predicted that all of these ligands bind to a common hydrophobic pocket in FpvB and used site-directed mutagenesis coupled with phenotypic assays to identify residues required for uptake. These analyses showed that siderophore and antibiotic uptake could be uncoupled. Our data show that FpvB is a promiscuous transporter of multiple chemically distinct ligands and fills in missing details of ferrichrome transport by P. aeruginosa. A clearer picture of the spectrum of outer membrane transporter substrate specificity is useful for the design of novel siderophore-antibiotic conjugates that can exploit nutrient uptake pathways to kill challenging Gram-negative pathogens.


Asunto(s)
Ferricromo , Sideróforos , Ferricromo/metabolismo , Sideróforos/metabolismo , Pseudomonas aeruginosa/metabolismo , Tioestreptona/metabolismo , Ligandos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Hierro/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
17.
Macromol Rapid Commun ; 44(16): e2200903, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36534428

RESUMEN

RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.


Asunto(s)
Histidina , Nanopartículas , Histidina/química , Acero Inoxidable , Adsorción , Polímeros/química , Nanopartículas/química
18.
CEN Case Rep ; 12(1): 27-31, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35729310

RESUMEN

We present a case of a rapid clinical recovery in a critically ill kidney transplant recipient with SARS-CoV-2 positivity, Epstein-Barr virus (EBV) reactivation and probable secondary hemophagocytic lymphohistiocytosis (HLH) treated with etoposide-free regimen, based on dexamethasone and a single dose of rituximab. Although rituximab is often a part of EBV-HLH treatment strategy, its use in simultaneous Coronavirus 2019 disease (COVID-19) and solid-organ transplantation has not been reported yet. We review the current evidence for the potential of SARS-CoV-2 to trigger EBV reactivation, leading to a severe clinical illness. Finally, we compare the clinical features of hyper-inflammatory response typical for severe COVID-19 and classical secondary HLH and discuss the benefits of therapeutic B-cell depletion in both conditions.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Trasplante de Riñón , Linfohistiocitosis Hemofagocítica , Humanos , COVID-19/complicaciones , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/diagnóstico , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4 , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Linfohistiocitosis Hemofagocítica/etiología , Rituximab/uso terapéutico , SARS-CoV-2
19.
Biotechnol Appl Biochem ; 70(2): 568-580, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35767864

RESUMEN

Eicosapentaenoic acid (EPA) could be extracted from diatoms such as Amphora sp. present abundantly in the ecosystems. In view of the key environmental and nutritional factors governing the diatoms growth rate, culture conditions were optimized for the biomass yield, total lipid content, EPA yield, and fatty acid composition under two main cultivation regimes: photoautotrophic and heterotrophic. The fastest growth rate about 0.20 ± 0.02 g/L and the highest EPA yield about 9.19 ± 3.56 mg EPA/g biomass were obtained by adding 10 g/L glucose and sucrose, respectively. Under photoautotrophic culture conditions, Amphora sp. rendered higher EPA yield at 100 rpm and 16:8 light/dark cycle. Total fatty acids produced predominantly comprised of an approximate 40-70% of saturated fatty acids, followed by 10-27% of monounsaturated fatty acids and then 8-25% of polyunsaturated fatty acids. These findings were able to pave a way for huge-scale microalgal biomass production in commercial EPA production.


Asunto(s)
Diatomeas , Microalgas , Ácido Eicosapentaenoico , Biomasa , Ecosistema , Ácidos Grasos
20.
Environ Sci Pollut Res Int ; 30(9): 24562-24574, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336739

RESUMEN

Bioretention systems are among the most popular stormwater best management practices (BMPs) for urban runoff treatment. Studies on plant performance using bioretention systems have been conducted, especially in developed countries with a temperate climate, such as the USA and Australia. However, these results might not be applicable in developing countries with tropical climates due to the different rainfall regimes and the strength of runoff pollutants. Thus, this study focuses on the performance of tropical plants in treating urban runoff polluted with greywater using a bioretention system. Ten different tropical plant species were triplicated and planted in 30 mesocosms with two control mesocosms without vegetation. One-way ANOVA was used to analyze the performance of plants, which were then ranked based on their performance in removing pollutants using the total score obtained for each water quality test. Results showed that vetiver topped the table with 86.4% of total nitrogen (TN) removal, 93.5% of total phosphorus (TP) removal, 89.8% of biological oxygen demand (BOD) removal, 90% of total suspended solids (TSS) removal, and 92.5% of chemical oxygen demand (COD) removal followed by blue porterweed, Hibiscus, golden trumpet, and tall sedge which can be recommended to be employed in future bioretention studies.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Clima Tropical , Lluvia , Calidad del Agua , Contaminantes Químicos del Agua/análisis , Plantas , Fósforo/análisis , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...