Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 13(7): e12469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965984

RESUMEN

Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity and other properties. Measuring how incorporation varies across a population of EVs is important for characterising such materials and understanding their function, yet it remains challenging to quantitatively characterise the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterisation platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labelling to antibody-labelling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labelling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterisation tool which complements and expands existing methods.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo , Vesículas Extracelulares/metabolismo , Humanos , Citometría de Flujo/métodos , Ingeniería de Proteínas/métodos , Microscopía Fluorescente/métodos , Bioingeniería/métodos
2.
Nanoscale ; 16(5): 2409-2418, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230506

RESUMEN

The single-chain physics of bottlebrush polymers plays a key role in their macroscopic properties. Although efforts have been made to understand the behavior of single isolated bottlebrushes, studies on their behavior in crowded, application-relevant environments have been insufficient due to limitations in characterization techniques. Here, we use single-molecule localization microscopy (SMLM) to study the conformations of individual bottlebrush polymers by direct imaging. Our previous work focused on bottlebrushes in a matrix of linear polymers, where our observations suggested that their behavior was largely influenced by an entropic incompatibility between the bottlebrush side chains and the linear matrix. Instead, here we focus on systems where this effect is reduced: in solvent-swollen polymer materials and in systems entirely composed of bottlebrushes. We measure chain conformations and rigidity using persistence length (lp) as side chain molecular weight (Msc) is varied. Compared to a system of linear polymers, we observe greater flexibility of the backbone in both systems. For bottlebrushes in bottlebrush matrices, we additionally observed a scaling relationship between lp and Msc that more closely follows theoretical predictions. For the more flexible chains in both systems, we reach the edge of our resolution limit and cannot visualize the entire contour of every chain. We bypass this limitation by discussing the aspect ratios of the features within the super-resolution images.

3.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808729

RESUMEN

Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells, and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity, and other properties. Measuring how incorporation varies across a population of EVs is important for characterizing such materials and understanding their function, yet it remains challenging to quantitatively characterize the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterization platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labeling to antibody-labeling of EVs using single vesicle flow cytometry, enabling us to quantify the substantial degree to which antibody labeling can underestimate the absolute number of proteins present on an EV. Finally, we demonstrate use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterization tool which complements and expands existing methods.

4.
Nano Lett ; 22(14): 5891-5897, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35786930

RESUMEN

The orientation of chains within polymeric materials influences their electrical, mechanical, and thermal properties. While many techniques can infer the orientation distribution of a bulk ensemble, it is challenging to determine this information at the single-chain level, particularly in an environment of otherwise identical polymers. Here, we use single-molecule localization microscopy (SMLM) to visualize the directions of chains within spin-coated polymer films. We find a strong relationship between shear force and the degree and direction of orientation, and additionally, we reveal the effects of chain length and solvent evaporation rate. This work utilizes single-chain resolution to observe the important, though often overlooked, property of chain orientation in the common fabrication process of spin-coating.


Asunto(s)
Polímeros , Solventes
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599105

RESUMEN

Although the behavior of single chains is integral to the foundation of polymer science, a clear and convincing image of single chains in the solid state has still not been captured. For bottlebrush polymers, understanding their conformation in bulk materials is especially important because their extended backbones may explain their self-assembly and mechanical properties that have been attractive for many applications. Here, single-bottlebrush chains are visualized using single-molecule localization microscopy to study their conformations in a polymer melt composed of linear polymers. By observing bottlebrush polymers with different side chain lengths and grafting densities, we observe the relationship between molecular architecture and conformation. We show that bottlebrushes are significantly more rigid in the solid state than previously measured in solution, and the scaling relationships between persistence length and side chain length deviate from those predicted by theory and simulation. We discuss these discrepancies using mechanisms inspired by polymer-grafted nanoparticles, a conceptually similar system. Our work provides a platform for visualizing single-polymer chains in an environment made up entirely of other polymers, which could answer a number of open questions in polymer science.

6.
Cereb Cortex ; 32(1): 41-62, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34255833

RESUMEN

Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.


Asunto(s)
Corteza Motora , Animales , Callithrix , Giro del Cíngulo , Vías Nerviosas/fisiología , Lóbulo Parietal
7.
Brain Struct Funct ; 226(7): 2417-2430, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34324075

RESUMEN

Lesions in the primary visual cortex (V1) cause extensive retrograde degeneration in the lateral geniculate nucleus, but it remains unclear whether they also trigger any neuronal loss in other subcortical visual centers. The inferior (IPul) and lateral (LPul) pulvinar nuclei have been regarded as part of the pathways that convey visual information to both V1 and extrastriate cortex. Here, we apply stereological analysis techniques to NeuN-stained sections of marmoset brain, in order to investigate whether the volume of these nuclei, and the number of neurons they comprise, change following unilateral long-term V1 lesions. For comparison, the medial pulvinar nucleus (MPul), which has no connections with V1, was also studied. Compared to control animals, animals with lesions incurred either 6 weeks after birth or in adulthood showed significant LPul volume loss following long (> 11 months) survival times. However, no obvious areas of neuronal degeneration were observed. In addition, estimates of neuronal density in lesioned hemispheres were similar to those in the non-lesioned hemispheres of same animals. Our results support the view that, in marked contrast with the geniculocortical projection, the pulvinar pathway is largely spared from the most severe long-term effects of V1 lesions, whether incurred in early postnatal or adult life. This difference can be linked to the more divergent pattern of pulvinar connectivity to the visual cortex, including strong reciprocal connections with extrastriate areas. The results also caution against interpretation of volume loss in brain structures as a marker for neuronal degeneration.


Asunto(s)
Pulvinar , Animales , Callithrix , Cuerpos Geniculados , Corteza Visual Primaria , Vías Visuales
8.
Neuroimage ; 226: 117625, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301940

RESUMEN

The rapid adoption of marmosets in neuroscience has created a demand for three dimensional (3D) atlases of the brain of this species to facilitate data integration in a common reference space. We report on a new open access template of the marmoset cortex (the Nencki-Monash, or NM template), representing a morphological average of 20 brains of young adult individuals, obtained by 3D reconstructions generated from Nissl-stained serial sections. The method used to generate the template takes into account morphological features of the individual brains, as well as the borders of clearly defined cytoarchitectural areas. This has resulted in a resource which allows direct estimates of the most likely coordinates of each cortical area, as well as quantification of the margins of error involved in assigning voxels to areas, and preserves quantitative information about the laminar structure of the cortex. We provide spatial transformations between the NM and other available marmoset brain templates, thus enabling integration with magnetic resonance imaging (MRI) and tracer-based connectivity data. The NM template combines some of the main advantages of histology-based atlases (e.g. information about the cytoarchitectural structure) with features more commonly associated with MRI-based templates (isotropic nature of the dataset, and probabilistic analyses). The underlying workflow may be found useful in the future development of 3D brain atlases that incorporate information about the variability of areas in species for which it may be impractical to ensure homogeneity of the sample in terms of age, sex and genetic background.


Asunto(s)
Atlas como Asunto , Callithrix/anatomía & histología , Corteza Cerebral/anatomía & histología , Animales , Femenino , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino
9.
ACS Cent Sci ; 6(3): 339-341, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32232132
10.
Nat Commun ; 11(1): 1133, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111833

RESUMEN

Understanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex. Data obtained in different animals are registered to a common stereotaxic space using an algorithm guided by expert delineation of histological borders, allowing accurate assignment of connections to areas despite interindividual variability. The resource incorporates tools for analyses relative to cytoarchitectural areas, including statistical properties such as the fraction of labeled neurons and the percentage of supragranular neurons. It also provides purely spatial (parcellation-free) data, based on the stereotaxic coordinates of 2 million labeled neurons. This resource helps bridge the gap between high-density cellular connectivity studies in rodents and imaging-based analyses of human brains.


Asunto(s)
Atlas como Asunto , Encéfalo/anatomía & histología , Callithrix/anatomía & histología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Mapeo Encefálico , Callithrix/fisiología , Imagenología Tridimensional , Neocórtex/citología , Neocórtex/metabolismo , Neocórtex/fisiología , Vías Nerviosas , Trazadores del Tracto Neuronal/administración & dosificación , Trazadores del Tracto Neuronal/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología
11.
Front Neuroanat ; 13: 96, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827427

RESUMEN

There has been a surge of interest in the structure and function of the mammalian claustrum in recent years. However, most anatomical and physiological studies treat the claustrum as a relatively homogenous structure. Relatively little attention has been directed toward possible compartmentalization of the claustrum complex into anatomical subdivisions, and how this compartmentalization is reflected in claustrum connections with other brain structures. In this study, we examined the cyto- and myelo-architecture of the claustrum of the common marmoset (Callithrix jacchus), to determine whether the claustrum contains internal anatomical structures or compartments, which could facilitate studies focused on understanding its role in brain function. NeuN, Nissl, calbindin, parvalbumin, and myelin-stained sections from eight adult marmosets were studied using light microscopy and serial reconstruction to identify potential internal compartments. Ultra high resolution (9.4T) post-mortem magnetic resonance imaging was employed to identify tractographic differences between identified claustrum subcompartments by diffusion-weighted tractography. Our results indicate that the classically defined marmoset claustrum includes at least two major subdivisions, which correspond to the dorsal endopiriform and insular claustrum nuclei, as described in other species, and that the dorsal endopiriform nucleus (DEnD) contains architecturally distinct compartments. Furthermore, the dorsal subdivision of the DEnD is tractographically distinguishable from the insular claustrum with respect to cortical connections.

12.
J Neurosci ; 39(27): 5311-5325, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31036760

RESUMEN

The boundaries of the visual areas located anterior to V2 in the dorsomedial region of the macaque cortex remain contentious. This region is usually conceptualized as including two functional subdivisions: the dorsal component of area V3 (V3d) laterally and another area named the parietooccipital area (PO) or V6 medially. However, the nature of the putative border between V3d and PO/V6 has remained undefined. We recorded the receptive fields of multiunit clusters in male macaques and reconstructed the locations of recording sites using histological sections and computer-generated maps. Immediately adjacent to dorsomedial V2, we observed a representation of the lower contralateral quadrant that represented the vertical meridian at its rostral border. This region formed a simple eccentricity gradient from ∼<5° in the annectant gyrus to >60° in the parietooccipital medial sulcus. There was no topographic reversal where one would expect to find the border between V3d and PO/V6. Rather, near the midline, this lower quadrant map continued directly into a representation of the peripheral upper visual field without an intervening lower quadrant representation. Therefore, cortex previously assigned to the medial part of V3d and to PO/V6 forms a single map that includes parts of both quadrants. Together with previous observations that V3d and PO/V6 are densely myelinated relative to adjacent cortex and share similar input from V1, these results suggest that they are parts of a single area (for which we suggest the designation V6), which is distinct from the one forming the ventral component of the third-tier complex.SIGNIFICANCE STATEMENT The primate visual cortex has a large number of areas. Knowing the extent of each visual area and how they can be distinguished from each other is essential for the interpretation of experiments aimed at understanding visual processing. Currently, there are conflicting models of the organization of the dorsomedial visual cortex rostral to area V2 (one of the earliest stages of cortical processing of vision). By conducting large-scale electrophysiological recordings, we found that what were originally thought to be distinct areas in this region (dorsal V3 and the parietooccipital area PO/V6), together form a single map of the visual field. This will help to guide future functional studies and the interpretation of the outcomes of lesions involving the dorsal visual cortex.


Asunto(s)
Neuronas/fisiología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Campos Visuales/fisiología , Animales , Macaca fascicularis , Masculino , Estimulación Luminosa , Vías Visuales/anatomía & histología , Vías Visuales/fisiología , Percepción Visual/fisiología
13.
Brain Struct Funct ; 224(1): 111-131, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30288557

RESUMEN

Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from areas of the auditory cortex in the macaque. However, auditory projections to V1 have not been reported in other primates. We investigated the existence of direct interconnections between V1 and auditory areas in the marmoset, a New World monkey. Labelled neurons in auditory cortex were observed following 4 out of 10 retrograde tracer injections involving V1. These projections to V1 originated in the caudal subdivisions of auditory cortex (primary auditory cortex, caudal belt and parabelt areas), and targeted parts of V1 that represent parafoveal and peripheral vision. Injections near the representation of the vertical meridian of the visual field labelled few or no cells in auditory cortex. We also placed 8 retrograde tracer injections involving core, belt and parabelt auditory areas, none of which revealed direct projections from V1. These results confirm the existence of a direct, nonreciprocal projection from auditory areas to V1 in a different primate species, which has evolved separately from the macaque for over 30 million years. The essential similarity of these observations between marmoset and macaque indicate that early-stage audiovisual integration is a shared characteristic of primate sensory processing.


Asunto(s)
Corteza Auditiva/fisiología , Sinapsis/fisiología , Corteza Visual/fisiología , Animales , Corteza Auditiva/citología , Percepción Auditiva , Conducta Animal , Evolución Biológica , Callithrix , Potenciales Evocados Auditivos , Potenciales Evocados Visuales , Femenino , Masculino , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Transmisión Sináptica , Corteza Visual/citología , Percepción Visual
14.
J Comp Neurol ; 525(6): 1421-1441, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27038224

RESUMEN

The claustrum has been the subject of intense research interest in recent years, driven in large part by its extensive connections with various regions of the cerebral cortex and by hypotheses surrounding its possible role in multimodal sensory and/or sensory-emotional integration. Here we employed neuroanatomical tracers to map projections from the claustrum-insular region to the medial prefrontal and anterior cingulate cortex of the common marmoset (Callithrx jacchus). These areas were selected based on their identification as "hub" areas of the default mode and cortical salience networks, respectively. Microinjections of fluorescent tracers, along with gold-nanoparticle-conjugated cholera toxin B-subunit and biotinylated dextran amine, were placed in subdivisions of the anterior cingulate area 24b/c and in medial prefrontal areas 32 and 32V. The resulting distribution of transported label showed rostral-caudal and dorsal-ventral topographic arrangement of claustrum connections and clear rostral-caudal topography of insular projections. Medial prefrontal connections were restricted mainly to a ventromedial strip located in the rostral half of the claustrum, with a second, smaller patch of cells in the caudal, ventrolateral portion. In contrast, injections into area 24 yielded dense, widespread connections from the dorsal claustrum, extending along its entire rostral-caudal length. Projections from the "classical" agranular, disgranular, and granular insular areas were sparse or nonexistent in areas 32 and 32V, with progressively increasing connections observed in more caudal tracer injections (i.e., in subdivisions of area 24). Transported label was observed in rostral peri-insular areas orbital periallocortex, orbital proisocortex, and insular proisocortex following all prefrontal injections. These data provide a structural connectivity foundation for interpretation of functional imaging studies, which often indicate activity in the "anterior insula" that may arise, in part, from claustrum and/or peri-insular projections to the anterior cingulate and medial prefrontal cortices. J. Comp. Neurol. 525:1421-1441, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ganglios Basales/anatomía & histología , Corteza Cerebral/anatomía & histología , Giro del Cíngulo/anatomía & histología , Vías Nerviosas/anatomía & histología , Corteza Prefrontal/anatomía & histología , Animales , Callithrix , Femenino , Imagenología Tridimensional , Masculino
15.
Front Syst Neurosci ; 8: 123, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071475

RESUMEN

We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA