Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Diabetologia ; 66(12): 2368-2386, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37615690

RESUMEN

AIMS/HYPOTHESIS: Insulin resistance is a major pathophysiological defect in type 2 diabetes and obesity. Numerous experimental and clinical studies have provided evidence that sustained lipotoxicity-induced mitophagy deficiency can exacerbate insulin resistance, leading to a vicious cycle between mitophagy dysfunction and insulin resistance, and thereby the onset of type 2 diabetes. Emerging evidence suggests that exosomes (Exos) from M2 macrophages play an essential role in modulating metabolic homeostasis. However, how macrophages are affected by lipotoxicity and the role of lipotoxicity in promoting macrophage activation to the M1 state have not been determined. The objective of this study was to determine whether M1 macrophage-derived Exos polarised by lipopolysaccharide (LPS) + palmitic acid (PA)-induced lipotoxicity contribute to metabolic homeostasis and impact the development of insulin resistance in type 2 diabetes. METHODS: Lipotoxicity-polarised macrophage-derived M1 Exos were isolated from bone marrow (C57BL/6J mouse)-derived macrophages treated with LPS+PA. Exos were characterised by transmission electron microscopy, nanoparticle tracking analysis and western blotting. Flow cytometry, H&E staining, quantitative real-time PCR, immunofluorescence, glucose uptake and output assays, confocal microscopy imaging, western blotting, GTTs and ITTs were conducted to investigate tissue inflammation, mitochondrial function and insulin resistance in vitro and in vivo. The roles of miR-27-3p and its target gene Miro1 (also known as Rhot1, encoding mitochondrial rho GTPase 1) and relevant pathways were predicted and assessed in vitro and in vivo using specific miRNA mimic, miRNA inhibitor, miRNA antagomir and siRNA. RESULTS: miR-27-3p was highly expressed in M1 Exos and functioned as a Miro1-inactivating miRNA through the miR-27-3p-Miro1 axis, leading to mitochondria fission rather than fusion as well as mitophagy impairment, resulting in NOD-like receptor 3 inflammatory activation and development of insulin resistance both in vivo and in vitro. Inactivation of miR-27-3p induced by M1 Exos prevented type 2 diabetes development in high-fat-diet-fed mice. CONCLUSIONS/INTERPRETATION: These findings suggest that the miR-27-3p-Miro1 axis, as a novel regulatory mechanism for mitophagy, could be considered as a new therapeutic target for lipotoxicity-related type 2 diabetes disease development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , Resistencia a la Insulina , MicroARNs , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Resistencia a la Insulina/genética , Lipopolisacáridos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Mitocondrias/metabolismo , Mitofagia
2.
Physiol Behav ; 259: 114050, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476780

RESUMEN

Cognitive impairment in individuals with intellectual disability (ID) is characterized by developmental delay and deficits in language and memory. Ionotropic AMPA mediate the majority of excitatory synaptic transmission in the central nervous system and are essential for the induction and maintenances of long-term potentiation (LTP) and long-term depression (LTD), two cellular models of learning and memory underlie many the symptoms of ID. Clinical research has found obese male patients with GluA3 interrupted underlie the symptom of ID. We tested GluA3-/Y mice under high fat diet (HFD) stress on a series of behavioral paradigms associated with symptoms of ID: wild type mice showed significant levels of sociability, while GluA3-/Y mice did not. Wild type mice showed significant preference for social novelty, while GluA3-/Y mice did not. Normal scores on relevant control measures confirmed general health and physical abilities in both GluA3-/Y and wild type mice (WT), ruling out artifactual explanations for social deficits. GluA3-/Y mice also showed working spatial memory behavior impairment in Y-maze test and abnormal anxiety in open-field test, compared to wild-type littermate controls. GluA3-/Y mice had a significantly reduced spontaneous activities tested by elevated plus maze, display both low social approach and resistance to change in routine on the T-maze, consistent with an ID-like phenotype. These findings demonstrate that selective gene deletion of GluA3 receptor in male mice under oxidative stress induced phenotypic abnormalities related to ID-like symptoms.


Asunto(s)
Ácido Glutámico , Discapacidad Intelectual , Humanos , Ratones , Masculino , Animales , Discapacidad Intelectual/genética , Dieta Alta en Grasa/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL , Trastornos de la Memoria , Aprendizaje por Laberinto
3.
J Nucl Cardiol ; 29(6): 2866-2877, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35790691

RESUMEN

BACKGROUND: Primary cardiac lymphoma (PCL) and primary cardiac sarcoma (PCS) are similar in clinical presentation but differ in management and outcomes. We aim to explore the role of PET morphology and clinical characteristics in distinguishing PCL from PCS. METHODS: Pretreatment 18F-FDG PET/CT and contrast-enhanced CT were performed in PCL (n = 14) and PCS (n = 15) patients. Patient demographics, overall survival, and progression-free survival were reviewed. PET/CT morphological and metabolic features were extracted. Specifically, R_Kurtosis, a PET-morphology parameter reflecting the tumor expansion within the heart, was calculated. RESULTS: Compared with PCS, PCL occurred at an older age, resulted in more cardiac dysfunctions and arrhythmias, and showed higher glucometabolism (SUVmax, SUVpeak, SUVmean, MTV, and TLG). Curative treatments improved survival for PCL but not for PCS. Multivariable logistic regression identified R_Kurtosis (OR = 27.025, P = .007) and cardiac conduction disorders (OR = 37.732, P = .016) independently predictive of PCL, and classification and regression tree analysis stratified patients into three subgroups: R_Kurtosis ≥ 0.044 (probability of PCL 88.9%), R_Kurtosis < 0.044 with conduction disorders (80.0%), and R_Kurtosis < 0.044 without conduction disorders (13.3%). CONCLUSION: PET-derived tumor expansion pattern (R_Kurtosis) and cardiac conduction disorders were helpful in distinguishing PCL from PCS, which might assist the clinical management.


Asunto(s)
Linfoma , Neoplasias del Mediastino , Sarcoma , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18/metabolismo , Estudios Retrospectivos , Sarcoma/diagnóstico por imagen , Linfoma/diagnóstico por imagen , Pronóstico
4.
Aging Cell ; 21(5): e13599, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349746

RESUMEN

Aging is an inevitable process that all individuals experience, of which the extent differs among individuals. It has been recognized as the risk factor of neurodegenerative diseases by affecting gut microbiota compositions, microglia, and cognition abilities. Aging-induced changes in gut microbiota compositions have a critical role in orchestrating the morphology and functions of microglia through the gut-brain axis. Gut microbiota communicates with microglia by its secreted metabolites and neurotransmitters. This is highly associated with age-related cognitive declines. Here, we review the main composition of microbiota in the aged individuals, outline the changes of the brain in age-related cognitive decline from a neuroinflammation perspective, especially the changes of morphology and functions of microglia, discuss the crosstalk between microbiota and microglia in the aged brain and further highlight the role of microbiota-microglia connections in neurodegenerative diseases (Alzheimer's disease and Parkinson's disease).


Asunto(s)
Disfunción Cognitiva , Microbiota , Enfermedades Neurodegenerativas , Anciano , Encéfalo/metabolismo , Cognición , Disfunción Cognitiva/metabolismo , Humanos , Microglía , Enfermedades Neurodegenerativas/metabolismo
5.
Front Oncol ; 11: 659200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381706

RESUMEN

PURPOSE: The KEAP1-NFE2L2 (Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2)) mutations are associated with resistance to chemotherapy or immunotherapy in non-small cell lung cancer (NSCLC). Conversely, it has been reported that NFE2L2 mutations potentiate improved clinical outcome with immunotherapy. However, therapeutic benefits for patients with KEAP1/NFE2L2 mutations remain unclear. The purpose of this study was to investigate the association between KEAP1/NFE2L2 and NSCLC prognosis, and to explore whether immunotherapy can improve prognosis in populations with KEAP1/NFE2L2 mutations. EXPERIMENTAL DESIGN: The impact of KEAP1/NFE2L2 mutations on survival outcomes in NSCLC patients received immunotherapy and chemotherapy was verified in the randomized phase II/III POPLAR/OAK trials (blood-based sequencing, bNGS cohort, POPLAR (n = 211) and OAK (n = 642)). The Cancer Genome Atlas (TCGA) NSCLC cohort (n=998) and an in-house Chinese NSCLC cohort (n=733) was used For the analysis of immune-related markers. RESULTS: Compared with KEAP1/NFE2L2 wild-type, patients with KEAP1/NFE2L2 mutations were significantly associated with poorer overall survival (OS, HR = 1.97, 95% CI 1.48-2.63, P < 0.001) on atezolizumab and docetaxel (HR = 1.66, 95% CI 1.28-2.16, P < 0.001). In KEAP1/NFE2L2 mutant group, there was no significant difference in median OS between atezolizumab and docetaxel (HR 0.74, 95% CI 0.53-1.03, P = 0.07). NFE2L2/KEAP1 mutations were significantly associated with higher TMB values and PD-L1 expression in the OAK/POPLAR and in-house Chinese NSCLC cohorts. GSEA revealed that KEAP1/NFE2L2mutant subgroup was associated with deficient infiltration of CD4+ T cells, NK T cells and natural Treg cells, and lower expression of DNA damage response genes in TCGA NSCLC cohort. CONCLUSIONS: Our study revealed that patients with KEAP1/NFE2L2 mutations have a worse prognosis than wild-type patients, both on immunotherapy and chemotherapy. In addition, in patients with KEAP1/NFE2L2 mutations, immunotherapy did not significantly improve prognosis compared to chemotherapy.

6.
Front Med (Lausanne) ; 7: 214, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637415

RESUMEN

Upregulation of a disintegrin and metalloprotease 9 (ADAM9) is correlated with progression of cancers, such as prostate, bladder, and pancreatic cancers. However, its role in triple-negative breast cancer (TNBC) is still unclear. Our study aimed to investigate whether ADAM9 is upregulated and promoted the aggressiveness in TNBC. Breast cancer cell lines and patient specimens were used to evaluate the ADAM9 expression by western blotting and immunohistochemistry staining, respectively. Compared with the non-TNBC, ADAM9 expression was significantly increased in TNBC cells and TNBC patient specimens. Based on the data acquired from public databases, the correlation between ADAM9 expression and breast cancer patient survival was analyzed by Kaplan-Meier method. It was shown that ADAM9 overexpression was significantly correlated with poorer survival in patients with TNBC. Furthermore, ADAM9 in TNBC cells was knocked down by small interference RNA and then studied by the MTT/colony formation assay, wound healing assay and transwell invasion assay on the cell proliferation, migration, and invasion, respectively. We found that inhibiting ADAM9 expression suppressed TNBC cell proliferation, migration, and invasion by lowering the activation of AKT/NF-κB pathway. Our results demonstrated that ADAM9 is an important molecule in mediating TNBC aggressiveness and may be a potential useful therapeutic target in TNBC treatment.

7.
Ther Adv Respir Dis ; 14: 1753466620915156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32552611

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) patients with an epidermal growth factor receptor (EGFR) mutation often initially respond to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment but may acquire drug resistance due to multiple factors. MicroRNAs are a class of small noncoding and endogenous RNA molecules that may play a role in overcoming the resistance. MATERIALS AND METHODS: In this study, we explored and validated, through in vitro experiments and in vivo models, the ability of a combination treatment of EGFR-TKI, namely gefitinib, and a microRNA mimic, miR-30a-5p, to overcome drug resistance through regulation of the insulin-like growth factor receptor-1 (IGF1R) and hepatocyte growth factor receptor signaling pathways, which all converge on phosphatidylinositol 3 kinase (PI3K), in NSCLC. First, we examined the hypothesized mechanisms of drug resistance in H1650, H1650-acquired gefitinib-resistance (H1650GR), H1975, and H460 cell lines. Next, we investigated a potential combination treatment approach to overcome acquired drug resistance in the H1650GR cell line and an H1650GR cell implanted mouse model. RESULTS: Dual inhibitors of EGFR and IGF1R significantly lowered the expression levels of phosphorylated protein kinase B (p-AKT) and phosphorylated mitogen-activated protein kinase (p-ERK) compared with the control group in all cell lines. With the ability to repress PI3K expression, miR-30a-5p mimics induced cell apoptosis, and inhibited cell invasion and migration in the treated H1650GR cell line. CONCLUSION: Gefitinib, combined with miR-30a-5p mimics, effectively suppressed the growth of H1650GR-induced tumor in xenografts. Hence, a combination therapy of gefitinib and miR-30a-5p may play a critical role in overcoming acquired resistance to EGFR-TKIs. The reviews of this paper are available via the supplemental material section.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Gefitinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/metabolismo , Oligonucleótidos/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Antioxid Redox Signal ; 32(7): 413-428, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31822118

RESUMEN

Aims: Type 2 diabetes (T2D) is associated with pancreatic ß-cell dysfunction, manifested by reduced glucose-stimulated insulin secretion (GSIS). The regulator of calcineurin 1 (RCAN1) in islets is an endogenous inhibitor of calcium-activated protein phosphatase. Previous studies have indicated that global RCAN1 overexpression under high nutrient stress is involved in insulin resistance in T2D. However, the specific role and mechanism of this gene's overexpression in pancreatic ß-cells have not been thoroughly elucidated to date. Results: In this study, we showed that mice overexpressing islet-specific RCAN1 exhibited a prediabetic phenotype with markedly reduced GSIS under nutrient stress. Overexpression of RCAN1 increased the autophagy-associated DNA methylation level of Beclin-1 suppressing the induction of autophagy, affected the protein kinase B, and downregulated the activation of mammalian target of rapamycin, leading to Miro1-mediated mitophagy deficiency. Furthermore, the exacerbated impairment of autophagy induction and mitophagy flux failures induced ß-cell apoptosis, resulting in GSIS impairment, lipid imbalance, and NOD-like receptor 3 proinflammation under high nutrient stress in mice. Innovation: Our present data identify a detrimental effect of RCAN1 overexpression on Miro1-mediated mitophagy deficiency and ß-cell dysfunction in high-fat diet-fed RCAN1 overexpressing mice. Conclusion: Our results revealed that strategies targeting RCAN1 in vivo may provide a therapeutic target to enhance ß-cell mitophagy quality and may determine the crucial factor in T2D development.


Asunto(s)
Proteínas de Unión al Calcio/genética , Células Secretoras de Insulina/metabolismo , Mitofagia , Proteínas Musculares/genética , Obesidad/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Ratones , Ratones Transgénicos , Proteínas Musculares/metabolismo
10.
Comput Biol Med ; 102: 51-56, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30245277

RESUMEN

Adenocarcinoma in female non-smokers is an under-explored subgroup of non-small cell lung cancer (NSCLC), in which the molecular mechanism and genetic risk factors remain unclear. We analyzed the protein profiles of plasma samples of 45 patients in this subgroup and 60 non-cancer subjects using surface-enhanced laser desorption/ionization time-of- flight mass spectrometry. Among 85 peaks of mass spectra, the differential expression analysis identified 15 markers based on False Discovery Rate control and the Discrete Wavelet Transforms further selected a cluster of 6 markers that were consistently observed at multiple scales of mass-charge ratios. This marker cluster, corresponding to 7 unique proteins, was able to distinguish the female non-smokers with adenocarcinoma from non-cancer subjects with a value of accuracy of 87.6%. We also predicted the role of competing endogenous RNAs (ceRNAs) in 3 out of these 7 proteins. Other studies reported that these ceRNAs and their targeting microRNAs, miR-206 and miR-613, were significantly associated with NSCLC. This study paves a crucial path for further investigating the genetic markers and molecular mechanism of this special NSCLC subgroup.


Asunto(s)
Adenocarcinoma del Pulmón/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Neoplasias Pulmonares/sangre , MicroARNs/sangre , Proteómica/métodos , Biomarcadores de Tumor , Análisis por Conglomerados , Biología Computacional/métodos , Femenino , Marcadores Genéticos , Humanos , Análisis por Matrices de Proteínas , Curva ROC , Análisis de Regresión , Análisis de Ondículas
11.
PLoS One ; 13(8): e0201585, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30114249

RESUMEN

OBJECTIVE: Metabolic syndrome (MetS) or prediabetes is a complex disorder that is defined by a clustering of cardiometabolic risk factors, including obesity, hypertriglyceridemia, reduced high-density lipoprotein (HDL) cholesterol, hypertension, and insulin resistance. Among cardiometabolic risk factors, central obesity plays a key role in the development of MetS through alterations in the secretion of adipokines and interacts with other MetS risk factors to unfavorably influence overall cardiometabolic risk. Obesity has grasped epidemic proportions in Asia, which has the highest number of people with diabetes in the world. But, the importance of central obesity in the clustering of all four MetS risk factors or vice versa in predicting severity of MetS has not yet been investigated in Asian population. Therefore, the present study examined the influence of central obesity on circulating levels of adipokines through its interaction with the clustering of cardiometabolic risk factors of MetS including hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension in Hong Kong Chinese adults. SUBJECTS: Blood samples from 83 Hong Kong Chinese adults, who were previously screened for MetS according to the guideline of the United States National Cholesterol Education Program Expert Panel Adult Treatment Panel III criteria were selected. Insulin and adipokines, including visfatin, chemerin, plasminogen activator inhibitor-1 (PAI-1), resistin, C-C motif chemokine ligand 2 (CCL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumour necrosis factor-α (TNF-α), leptin and adiponectin were assessed. RESULTS: The interacting effect of central obesity with all of the other four MetS risk factors increased the proinflammatory status of adipokines (TNF-α, leptin) and decreased the anti-inflammatory status of adipokine (adiponectin). CONCLUSION: Our results indicate that the inflammatory status of MetS may be more severe in the presence of central obesity. Adipokines, as biomarkers for pathophysiological changes, may help to improve early patient identification and to predict MetS-associated morbidity and mortality.


Asunto(s)
Adipoquinas/sangre , Síndrome Metabólico/metabolismo , Obesidad Abdominal/metabolismo , Adiponectina/sangre , Anciano , Enfermedades Cardiovasculares , Femenino , Hong Kong , Humanos , Insulina/sangre , Leptina/sangre , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/etiología , Persona de Mediana Edad , Obesidad Abdominal/sangre , Obesidad Abdominal/complicaciones , Factores de Riesgo , Factor de Necrosis Tumoral alfa/sangre
12.
Front Physiol ; 9: 294, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636702

RESUMEN

Central obesity and hypertension are common risk factors for the metabolic syndrome, cardiovascular and renal diseases. Studies have shown that it is more difficult to control blood pressure and prevent end-organ damage in obese individuals with hypertension compared to their non-obese counterparts, especially among women. Obese females have a 6 times higher risk of developing hypertension than non-obese females while obese males are at a 1.5 times higher risk of developing hypertension, compared to their non-obese counterparts. Indeed, the inter-relationship between obesity and hypertension is unclear. Adipokines have been proposed to play a mediating role in the relationship between obesity and hypertension and are involved in the pathogenesis of metabolic diseases. Therefore, this study sought to determine the role of adipokines (adiponectin, plasminogen activator inhibitor-1, leptin, and tumor necrosis factor-α) in hypertensive Hong Kong Chinese women with central obesity. A total of 387 women aged 58 ± 11 years who were examined with a 2 × 2 factorial design for central obesity (waist circumference ≥ 80 cm) and hypertension (blood pressure ≥ 140/90 mmHg), were recruited from a pool of 1,492 Hong Kong Chinese adults who were previously screened for metabolic syndrome. Subjects with hyperglycemia, hypertriglyceridemia, and dyslipidemia were excluded to eliminate confounding effects. Our findings revealed that hypertensive women with central obesity had a lower anti-inflammatory status (adiponectin) and a higher pro-inflammatory status (TNF-α) than obese alone or hypertensive alone women. Also, women with central obesity had higher circulatory PAI-1 and leptin concentrations than their non-obese counterparts. We conclude that obesity may shift toward a more pro-inflammatory state and may become more severe in the presence of hypertension or vice versa.

13.
Sci Rep ; 8(1): 3689, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29487339

RESUMEN

Pressure-induced injury (PI), such as a pressure ulcer, in patients with limited mobility is a healthcare issue worldwide. PI is an injury to skin and its underlying tissue such as skeletal muscle. Muscle compression, composed of mechanical deformation of muscle and external load, leads to localized ischemia and subsequent unloading reperfusion and, hence, a pressure ulcer in bed-bound patients. Although the gross factors involved in PI have been identified, little is known about the exact disease mechanism or its links to apoptosis, autophagy and inflammation. Here, we report that PI is mediated by intrinsic apoptosis and exacerbated by autophagy. Conditional ablation of Bax and Bak activates the Akt-mTOR pathway and Bnip3-mediated mitophagy and preserves mitochondrial contents in compressed muscle. Moreover, we find that the presence/absence of Bax and Bak alters the roles and functions of autophagy in PI. Our results suggest that manipulating apoptosis and autophagy are potential therapeutic targets for treatment and prevention of PI.


Asunto(s)
Músculo Esquelético/metabolismo , Presión/efectos adversos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Western Blotting , Muerte Celular/genética , Muerte Celular/fisiología , Inmunoprecipitación , Masculino , Ratones , Ratones Noqueados , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
14.
Scand J Med Sci Sports ; 28(3): 1130-1138, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29205515

RESUMEN

Metabolic syndrome (MetS) is associated with diabetes mellitus and cardiovascular diseases. Our previous study indicated that people with MetS showed a decrease in waist circumference and a decreasing trend in blood pressure after 1-year yoga. This study investigated the effect of yoga on MetS people with high-normal blood pressure by exploring modulations in proinflammatory adipokines (leptin, chemerin, visfatin, and plasminogen activator inhibitor-1 or PAI-1) and an anti-inflammatory adipokine (adiponectin). A total of 97 Hong Kong Chinese individuals aged 57.6 ± 9.1 years with MetS and high-normal blood pressure were randomly assigned to control (n = 45) and yoga groups (n = 52). Participants in the control group were not given any intervention but were contacted monthly to monitor their health status. Participants in the yoga group underwent a yoga training program with three 1-hour yoga sessions weekly for 1 year. The participants' sera were harvested and assessed for adipokines. Generalized estimating equation (GEE) was used to examine the interaction effect between 1-year time (pre vs post), and intervention (control vs yoga). GEE analyses revealed significant interaction effects between 1-year time and yoga intervention for the decreases in leptin and chemerin and the increase in adiponectin concentration in the sera examined. These results demonstrated that 1-year yoga training decreased proinflammatory adipokines and increased anti-inflammatory adipokine in adults with MetS and high-normal blood pressure. These findings support the beneficial role of yoga in managing MetS by favorably modulating adipokines.


Asunto(s)
Adipoquinas/sangre , Hipertensión/sangre , Síndrome Metabólico/sangre , Yoga , Anciano , Quimiocinas/sangre , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Leptina/sangre , Masculino , Persona de Mediana Edad , Nicotinamida Fosforribosiltransferasa/sangre , Inhibidor 1 de Activador Plasminogénico/sangre , Factores de Riesgo
16.
Oncotarget ; 8(53): 90693-90705, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207597

RESUMEN

Mitochondrial function is essential to meet metabolic demand of pancreatic beta cells respond to high nutrient stress. Mitophagy is an essential component to normal pancreatic ß-cell function and has been associated with ß-cell failure in Type 2 diabetes (T2D). Our previous studies have indicated that mitochondrial Rho (Miro) GTPase-mediated mitochondrial dysfunction under high nutrient stress leads to NOD-like receptor 3 (NLRP3)-dependent proinflammatory responses and subsequent insulin resistance. However, the in vivo mechanism by which Miro1 underlies mitophagy has not been identified. Here we show firstly that the expression of Miro is reduced in human T2D and mouse db/db islets and in INS-1 cell line exposed to high glucose and palmitate. ß-cell specific ablation of Miro1 (Miro1f/f: Rip-cre mice, or (IKO) under high nutrient stress promotes the development of hyperglycemia. ß-cells from IKO mice display an inhibition of mitophagy under oxidative stress and induces mitochondrial dysfunction. Dysfunctional mitophagy in IKO mice is represented by damaged islet beta cell mitochondrial and secretory capacity, unbalanced downstream MKK-JNK signalling without affecting the levels of MEK, ERK or p38 activation and subsequently, impaired insulin secretion signaling via inhibition IRS-AKT-Foxo1 pathway, leading to worsening glucose tolerance in these mice. Thus, these data suggest that Miro1 may be responsible for mitophagy deficiency and ß-cell dysfunction in T2D and that strategies target Miro1 in vivo may provide a therapeutic target to enhance ß-cell mitochondrial quality and insulin secretion to ameliorate complications associated with T2D.

17.
J Healthc Eng ; 2017: 6493016, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29065631

RESUMEN

Electronic Health Record (EHR) system enables clinical decision support. In this study, a set of 112 abdominal computed tomography imaging examination reports, consisting of 59 cases of hepatocellular carcinoma (HCC) or liver metastases (so-called HCC group for simplicity) and 53 cases with no abnormality detected (NAD group), were collected from four hospitals in Hong Kong. We extracted terms related to liver cancer from the reports and mapped them to ontological features using Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (CT). The primary predictor panel was formed by these ontological features. Association levels between every two features in the HCC and NAD groups were quantified using Pearson's correlation coefficient. The HCC group reveals a distinct association pattern that signifies liver cancer and provides clinical decision support for suspected cases, motivating the inclusion of new features to form the augmented predictor panel. Logistic regression analysis with stepwise forward procedure was applied to the primary and augmented predictor sets, respectively. The obtained model with the new features attained 84.7% sensitivity and 88.4% overall accuracy in distinguishing HCC from NAD cases, which were significantly improved when compared with that without the new features.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Sistemas de Apoyo a Decisiones Clínicas , Registros Electrónicos de Salud , Neoplasias Hepáticas/fisiopatología , Algoritmos , Hong Kong , Humanos , Systematized Nomenclature of Medicine , Tomografía Computarizada por Rayos X
18.
Front Genet ; 8: 8, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28210267

RESUMEN

Non-small cell lung cancer (NSCLC) comprises about 84% of all lung cancers. Many treatment options are available but the survival rate is still very low due to drug resistance. It has been found that phosphoinositide-3-kinase (PI3K) affects sensitivity to tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib. Expression level of seven in absentia homolog 2 (SIAH2), an E3 ubiquitin-protein ligase, is upregulated in NSCLC and correlated with tumor grade. However, the relationship between PI3K and SIAH2 remains unclear and therefore it is not known whether they can act as treatment co-targets and theranostic dual markers for overcoming TKI resistance. It is worthy to note that PI3K and SIAH2 are potentially regulated by a common group of microRNAs in miR-30 family. Our bioinformatics analyses showed upregulated SIAH2 expression in NSCLC based on mass spectrometry data, explored its indirect interaction with PI3K and predicted their targeting microRNAs in common. We have also explored the potential role of miR-30 family in the modulation of PI3K-SIAH2 interaction in NSCLC.

19.
Biochim Biophys Acta Gen Subj ; 1861(2): 335-353, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27888147

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) is a major method for studying the genetics of complex diseases. Finding all sequence variants to explain fully the aetiology of a disease is difficult because of their small effect sizes. To better explain disease mechanisms, pathway analysis is used to consolidate the effects of multiple variants, and hence increase the power of the study. While pathway analysis has previously been performed within GWAS only, it can now be extended to examining rare variants, other "-omics" and interaction data. SCOPE OF REVIEW: 1. Factors to consider in the choice of software for GWAS pathway analysis. 2. Examples of how pathway analysis is used to analyse rare variants, other "-omics" and interaction data. MAJOR CONCLUSIONS: To choose appropriate software tools, factors for consideration include covariate compatibility, null hypothesis, one- or two-step analysis required, curation method of gene sets, size of pathways, and size of flanking regions to define gene boundaries. For rare variants, analysis performance depends on consistency between assumed and actual effect distribution of variants. Integration of other "-omics" data and interaction can better explain gene functions. GENERAL SIGNIFICANCE: Pathway analysis methods will be more readily used for integration of multiple sources of data, and enable more accurate prediction of phenotypes.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Transducción de Señal/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Programas Informáticos
20.
Front Genet ; 7: 197, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895663

RESUMEN

Lung cancer is one of the most common deadly diseases worldwide, most of which is non-small cell lung cancer (NSCLC). The epidermal growth factor receptor (EGFR) mutant NSCLCs frequently respond to the EGFR tyrosine kinase inhibitors (EGFR-TKIs) treatment, such as Gefitinib and Erlotinib, but the development of acquired resistance limits the utility. Multiple resistance mechanisms have been explored, e.g., the activation of alternative tyrosine kinase receptors (TKRs) sharing similar downstream pathways to EGFR. MicroRNAs (miRNAs) are short, endogenous and non-coding RNA molecules, regulating the target gene expression. In this study, we explored the potential of miR-30a-5p in targeting the EGFR and insulin-like growth factor receptor-1 (IGF-1R) signaling pathways to overcome the drug resistance. IGF-1R is one of the tyrosine kinase receptors that share the same EGFR downstream molecules, including phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT). In this work, an in vitro study was designed using EGFR inhibitor (Gefitinib), IGF-1R inhibitor (NVP-AEW541), and miRNA mimics in two Gefitinib-resistant NSCLC cell lines, H460 and H1975. We found that the combination of EGFR and IGF-1R inhibitors significantly decreased the phosphorylated AKT (p-AKT) expression levels compared to the control group in these two cell lines. Knockdown of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) had the same effect with the dual inhibition of EGFR and IGF-1R to reduce the expression of p-AKT in the signaling pathway. Overexpression of miR-30a-5p significantly reduced the expression of the PI3K regulatory subunit (PIK3R2) to further induce cell apoptosis, and inhibit cell invasion and migration properties. Hence, miR-30a-5p may play vital roles in overcoming the acquired resistance to EGFR-TKIs, and provide useful information for establishing novel cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA