Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
2.
Biomolecules ; 13(5)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37238696

RESUMEN

The ideal rice phenotype is that of plants exhibiting fewer panicles with high biomass, large grain number, flag leaf area with small insertion angles, and an erected morphology improving light interception. The sunflower transcription factor HaHB11, homeodomain-leucine zipper I, confers increased seed yield and abiotic stress tolerance to Arabidopsis and maize. Here, we report the obtaining and characterization of rice plants expressing HaHB11 driven by its promoter or the 35S constitutive one. Transgenic p35S:HaHB11 plants closely resembled the ideal high-yield phenotype, whereas those carrying the pHaHB11:HaHB11 construct were hard to distinguish from the wild type. The former had an erected architecture, enhanced vegetative leaf biomass, rolled flag leaves with a larger surface, sharper insertion angles insensitive to brassinosteroids, and higher harvest index and seed biomass than the wild type. The combination of the distinct features exhibited by p35S:HaHB11 plants, including the increased number of set grains per panicle, supports the high-yield phenotype. We wondered where HaHB11 has to be expressed to achieve the high-yield phenotype and evaluated HaHB11 expression levels in all tissues. The results indicate that its expression is particularly necessary in the flag leaf and panicle to produce the ideal phenotype.


Asunto(s)
Arabidopsis , Oryza , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oryza/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fenotipo , Arabidopsis/genética , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 115(4): 952-966, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37165773

RESUMEN

Adaptation to different soil conditions is a well-regulated process vital for plant life. AtHB23 is a homeodomain-leucine zipper I transcription factor (TF) that was previously revealed as crucial for plant survival under salinity conditions. We wondered whether this TF has partners to perform this essential function. Therefore, TF cDNA library screening, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays were complemented with expression analyses and phenotypic characterization of silenced, mutant, overexpression, and crossed plants in normal and salinity conditions. We revealed that AtHB23, AtPHL1, and AtMYB68 interact with each other, modulating root development and the salinity response. The encoding genes are coexpressed in specific root tissues and at specific developmental stages. In normal conditions, amiR68 silenced plants have fewer initiated roots, the opposite phenotype to that shown by amiR23 plants. AtMYB68 and AtPHL1 play opposite roles in lateral root elongation. Under salinity conditions, AtHB23 plays a crucial positive role in cooperating with AtMYB68, whereas AtPHL1 acts oppositely by obstructing the function of the former, impacting the plant's survival ability. Such interplay supports the complex interaction between these TF in primary and lateral roots. The root adaptation capability is associated with the amyloplast state. We identified new molecular players that through a complex relationship determine Arabidopsis root architecture and survival in salinity conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Tolerancia a la Sal , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tolerancia a la Sal/genética
4.
J Exp Bot ; 74(6): 1873-1889, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36622804

RESUMEN

Carbohydrates are transported from source to sink tissues. The efficiency of this transport determines plant growth and development. The process is finely regulated and transcription factors are crucial in its modulation. AtHB5 is a homeodomain-leucine zipper I transcription factor that is repressed during stem maturation. However, its function in this developmental event is unknown. Here, we investigated the expression pattern and role of AtHB5. AtHB5 was expressed in roots, hypocotyls, stems, petioles, pedicels, and central leaf veins. athb5 mutant plants exhibited wider and more lignified stems than controls, whereas AtHB5 overexpressors showed the opposite phenotype. Cross sections of athb5 mutant stems showed enlarged vascular bundle, xylem, phloem, and petiole areas, whereas AtHB5 overexpressors had callose deposits. Several genes involved in starch biosynthesis and degradation had altered transcript levels in athb5 mutants and AtHB5 overexpressors. Rosette and stem biomass was enhanced in athb5 mutants, positively impacting seed yield, protein, and lipid content. Moreover, these effects were more evident in debranched plants. Finally, transport to roots was significantly slowed in AtHB5 overexpressors. Altogether, the results indicated that AtHB5 is a negative modulator of carbon partitioning and sucrose transport from source to sink tissues, and its overexpression diminished plant biomass and seed yield.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas , Floema/metabolismo
5.
Plant Sci ; 324: 111421, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35995111

RESUMEN

Gravitropism is a finely regulated tropistic response based on the plant perception of directional cues. Such perception allows them to direct shoot growth upwards, above ground, and root growth downwards, into the soil, anchoring the plant to acquire water and nutrients. Gravity sensing occurs in specialized cells and depends on auxin distribution, regulated by influx/efflux carriers. Here we report that AtHB40, encoding a transcription factor of the homeodomain-leucine zipper I family, was expressed in the columella and the root tip. Athb40 mutants exhibited longer primary roots. Enhanced primary root elongation was in agreement with a higher number of cells in the transition zone and the induction of CYCLINB transcript levels. Moreover, athb40 mutants and AtHB40 overexpressors displayed enhanced and delayed gravitropistic responses, respectively. These phenotypes were associated with altered auxin distribution and deregulated expression of the auxin transporters LAX2, LAX3, and PIN2. Accordingly, lax2 and lax3 mutants also showed an altered gravitropistic response, and LAX3 was identified as a direct target of AtHB40. Furthermore, AtHB40 is induced by AtHB53 when the latter is upregulated by auxin. Altogether, these results indicate that AtHB40 modulates cell division and auxin distribution in the root tip thus altering primary root length and gravitropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Gravitropismo/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Suelo , Factores de Transcripción/metabolismo , Agua/metabolismo
6.
Plant Physiol ; 189(1): 230-247, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148415

RESUMEN

The sunflower (Helianthus annuus) transcription factor HaHB11 (H. annuus  Homeobox 11) belongs to the homeodomain-leucine zipper family and confers improved yield to maize (Zea mays) hybrids (HiII × B73) and lines. Here we report that transgenic maize lines expressing HaHB11 exhibited better performance under waterlogging, both in greenhouse and field trials carried out during three growth cycles. Transgenic plants had increased chlorophyll content, wider stems, more nodal roots, greater total aerial biomass, a higher harvest index, and increased plant grain yield. Under severe defoliation caused by a windstorm during flowering, transgenic genotypes were able to set more grains than controls. This response was confirmed in controlled defoliation assays. Hybrids generated by crossing B73 HaHB11 lines with the contrasting Mo17 lines were also tested in the field and exhibited the same beneficial traits as the parental lines, compared with their respective controls. Moreover, they were less penalized by stress than commercial hybrids. Waterlogging tolerance increased via improvement of the root system, including more xylem vessels, reduced tissue damage, less superoxide accumulation, and altered carbohydrate metabolism. Multivariate analyses corroborated the robustness of the differential traits observed. Furthermore, canopy spectral reflectance data, computing 29 vegetation indices associated with biomass, chlorophyll, and abiotic stress, helped to distinguish genotypes as well as their growing conditions. Altogether the results reported here indicate that this sunflower gene constitutes a suitable tool to improve maize plants for environments prone to waterlogging and/or wind defoliation.


Asunto(s)
Helianthus , Clorofila/metabolismo , Helianthus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays
7.
Plant Sci ; 315: 111133, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35067303

RESUMEN

Carbohydrates are produced in green tissues through photosynthesis and then transported to sink tissues. Carbon partitioning is a strategic process, fine regulated, involving specific sucrose transporters in each connecting tissue. Here we report that a screening of an Arabidopsis transcription factor (TF) library using the homeodomain-leucine zipper I member AtHB23 as bait, allowed identifying the TF AtPHL1 interacting with the former. An independent Y2H assay, and in planta by BiFC, confirmed such interaction. AtHB23 and AtPHL1 coexpressed in the pedicel-silique nodes and the funiculus. Mutant plants (phl1, and amiR23) showed a marked reduction of lipid content in seeds, although lipid composition did not change compared to the wild type. While protein and carbohydrate contents were not significantly different between mutants and control mature seeds, we observed a reduced carbohydrate content in mutant plants young siliques (7 days after pollination). Moreover, using a CFDA probe, we revealed an impaired transport to the seeds, and the gene encoding the carbohydrate transporters SWEET10 and SWEET11, usually expressed in connecting tissues, was repressed in the amiR23 and phl1 mutant plants. Altogether, the results indicated that AtHB23 and AtPHL1 act together, promoting sucrose transport, and the lack of any of them provoked a reduction in seeds lipid content.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Metabolismo de los Hidratos de Carbono/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
J Exp Bot ; 72(11): 4005-4021, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33713412

RESUMEN

Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors and hormones that are crucial players regulating root plasticity. Multiple transcription factor families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less well investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) transcription factors in root development. This family is divided into four subfamilies (I-IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip transcription factors in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several individuals from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.


Asunto(s)
Arabidopsis , Leucina Zippers , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Exp Bot ; 71(20): 6282-6296, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32882705

RESUMEN

The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.


Asunto(s)
Leucina Zippers , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Cinesinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Signal Behav ; 15(6): 1755504, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32310024

RESUMEN

Root architecture depends on the development of the main root and also on the number and density of lateral roots. Most molecular knowledge about the development of lateral roots was acquired studying primary roots, and it was implied that high order roots follow the same pattern. Recently, we informed that AtHB23 is differentially regulated in primary and secondary roots. Here we show that LBD16, a target of AtHB23, also is differentially regulated; it is expressed in the tip of secondary and tertiary roots but not in primary ones. Moreover, the key hormone auxin exhibits a different distribution pattern in secondary and tertiary roots, according to the reporter DR5. Finally, we show that in Col 0 and Ler ecotypes development of secondary and tertiary roots exhibits significant variations. Altogether, we can conclude that different genetic programs govern secondary and tertiary roots development and such processes are dependent on the Arabidopsis genotype.


Asunto(s)
Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Front Plant Sci ; 11: 178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210989

RESUMEN

Research, production, and use of genetically modified (GM) crops have split the world between supporters and opponents. Up to now, this technology has been limited to the control of weeds and pests, whereas the second generation of GM crops is expected to assist farmers in abiotic stress tolerance or improved nutritional features. Aiming to analyze this subject holistically, in this presentation we address an advanced technology for drought-tolerant GM crops, upscaling from molecular details obtained in the laboratory to an extensive network of field trials as well as the impact of the introduction of this innovation into the market. Sunflower has divergent transcription factors, which could be key actors in the drought response orchestrating several signal transduction pathways, generating an improved performance to deal with water deficit. One of such factors, HaHB4, belongs to the homeodomain-leucine zipper family and was first introduced in Arabidopsis. Transformed plants had improved tolerance to water deficits, through the inhibition of ethylene sensitivity and not by stomata closure. Wheat and soybean plants expressing the HaHB4 gene were obtained and cropped across a wide range of growing conditions exhibiting enhanced adaptation to drought-prone environments, the most important constraint affecting crop yield worldwide. The performance of wheat and soybean, however, differed slightly across mentioned environments; whereas the improved behavior of GM wheat respect to controls was less dependent on the temperature regime (cool or warm), differences between GM and wild-type soybeans were remarkably larger in warmer compared to cooler conditions. In both species, these GM crops are good candidates to become market products in the near future. In anticipation of consumers' and other stakeholders' interest, spectral analyses of field crops have been conducted to differentiate these GM crops from wild type and commercial cultivars. In this paper, the potential impact of the release of such market products is discussed, considering the perspectives of different stakeholders.

12.
J Exp Bot ; 71(10): 3142-3156, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32140724

RESUMEN

Soybean yield is limited primarily by abiotic constraints. No transgenic soybean with improved abiotic stress tolerance is commercially available. We transformed soybean plants with genetic constructs able to express the sunflower transcription factor HaHB4, which confers drought tolerance to Arabidopsis and wheat. One line (b10H) carrying the sunflower promoter was chosen among three independent lines because it exhibited the best performance in seed yield, and was evaluated in the greenhouse and in 27 field trials in different environments in Argentina. In greenhouse experiments, transgenic plants showed increased seed yield under stress conditions together with greater epicotyl diameter, larger xylem area, and increased water use efficiency compared with controls. They also exhibited enhanced seed yield in warm and dry field conditions. This response was accompanied by an increase in seed number that was not compensated by a decrease in individual seed weight. Transcriptome analysis of plants from a field trial with maximum difference in seed yield between genotypes indicated the induction of genes encoding redox and heat shock proteins in b10H. Collectively, our results indicate that soybeans transformed with HaHB4 are expected to have a reduced seed yield penalty when cultivated in warm and dry conditions, which constitute the best target environments for this technology.


Asunto(s)
Arabidopsis , Helianthus , Arabidopsis/genética , Argentina , Sequías , Helianthus/genética , Plantas Modificadas Genéticamente/genética , Glycine max/genética , Factores de Transcripción/genética
13.
Plant Cell Physiol ; 61(3): 659-670, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868910

RESUMEN

The presence of small tooth-like indentations, or serrations, characterizes leaf margins of Arabidopsis thaliana plants. The NAC family member CUP-SHAPED COTYLEDON 2 (CUC2), which undergoes post-transcriptional gene silencing by three micro-RNA genes (MIR164A, B and C), controls the extension of leaf serration. Here, we analyzed the role of AtHB1, a transcription factor (TF) belonging to the homeodomain-leucine zipper subfamily I, in shaping leaf margins. Using mutants with an impaired silencing pathway as background, we obtained transgenic plants expressing AtHB1 over 100 times compared to controls. These plants presented an atypical developmental phenotype characterized by leaves with deep serration. Transcript measurements revealed that CUC2 expression was induced in plants overexpressing AtHB1 and repressed in athb1 mutants, indicating a positive regulation exerted by this TF. Moreover, molecular analyses of AtHB1 overexpressing and mutant plants revealed that AtHB1 represses MIR164 transcription. We found that overexpression of MIR164B was able to reverse the serration phenotype of plants overexpressing AtHB1. Finally, chromatin immunoprecipitation assays revealed that AtHB1 was able to bind in vivo the promoter regions of all three MIR164 encoding loci. Altogether, our results indicate that AtHB1 directly represses MIR164 expression to enhance leaf serration by increasing CUC2 levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Fenotipo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Transcriptoma
14.
Plant Sci ; 287: 110185, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31481205

RESUMEN

HaHB11 is a sunflower transcription factor from the homeodomain-leucine zipper I family. Transgenic Arabidopsis plants expressing HaHB11 had larger rosettes and improved seed yield. In this work maize plants from hybrid HiII were transformed with 35S:HaHB11, ZmUBI:HaHB11 and ProHaHB11:HaHB11 and then backcrossed to B73 to obtain a more homozygous inbred phenotype. Transgene expression levels were stable at least during three generations. Greenhouse-grown HaHB11 transgenic lines had larger leaf area and delayed senescence than controls, together with increased total biomass (up to 25%) and seed yield (up to 28%). Field trials conducted with T2 and T4 generations indicated that enhanced leaf area (up to 18%), stem diameter (up to 28%) and total biomass (up to 40%) as well as delayed leaf senescence were maintained among transgenic individuals when upscaling from pots in the greenhouse to communal plants in the field. The T4 field-grown transgenic generation had increased light interception and radiation use efficiency as well as seed yield (43-47% for events driven by the 35S promoter). Results suggest that HaHB11 is a promising tool for crop improvement because differential traits observed in the Arabidopsis model plant were preserved in a crop like maize independently of growth conditions and backcross level.


Asunto(s)
Helianthus/genética , Factores de Transcripción/metabolismo , Zea mays/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Biomasa , Leucina Zippers , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Factores de Transcripción/genética , Transgenes , Zea mays/genética , Zea mays/crecimiento & desarrollo
15.
Plant J ; 100(6): 1224-1236, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31444832

RESUMEN

In Arabidopsis, lateral root (LR) development is mainly controlled by several known auxin-regulated transcription factors (TFs). Here, we show that AtHB23 (a homeodomain-leucine zipper I TF) participates in this intricate network. Our study of the expression pattern of AtHB23 revealed that it is transcriptionally activated in the early stages of secondary LR primordium (LRP). We found that AtHB23 directly limits the expression of LBD16, a key factor in LR initiation, and also directly induces the auxin transporter gene LAX3. We propose that this HD-Zip I mediates the regulation of LAX3 by ARF7/19. Furthermore, AtHB23 plays distinct roles during the formation of secondary and tertiary roots, exhibiting differential expression patterns. ATHB23 is expressed throughout the tertiary root primordium, whereas it is restricted to early stages in secondary primordia, likely later repressing LBD16 in tertiary LR development and further inhibiting root emergence. Our results suggest that different genetic programs govern the formation of LRP from the main or secondary roots, thereby shaping the global dynamic architecture of the root system.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal , Factores de Transcripción/genética
16.
Plant J ; 99(4): 717-732, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009150

RESUMEN

Plant architecture plasticity determines the efficiency at harvesting and plays a major role defining biomass and seed yield. We observed that several previously described transgenic genotypes exhibiting increased seed yield also show wider stems and more vascular bundles than wild-type plants. Here, the relationship between these characteristics and seed yield was investigated. Hanging weight on the main stem of Arabidopsis plants provoked significant stem widening. Such widening was accompanied by an increase in the number of vascular bundles and about 100% of yield increase. In parallel, lignin deposition diminished. Vascular bundle formation started in the upper internode and continued downstream. AUX/LAX carriers were essential for this response. The increase of vascular bundles was reverted 3 weeks after the treatment leading to an enlarged xylem area. Aux1, lax1, and lax3 mutant plants were also able to enlarge their stems after the treatment, whereas lax2 plants did not. However, none of these mutants exhibited more vascular bundles or seed yield compared with untreated plants. Weight-induced xylem area enhancement and increased seed yield were also observed in sunflower plants. Altogether these results showed a strong correlation between the number of vascular bundles and enhanced seed yield under a long-day photoperiod. Furthermore, changes in the levels of auxin carriers affected both these processes in the same manner, suggesting that there may be an underlying causality.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/fisiología , Helianthus/metabolismo , Helianthus/fisiología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Semillas/metabolismo , Semillas/fisiología , Xilema/metabolismo , Xilema/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Helianthus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Semillas/genética , Xilema/genética
17.
J Exp Bot ; 70(5): 1669-1681, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30726944

RESUMEN

HaHB4 is a sunflower transcription factor belonging to the homeodomain-leucine zipper I family whose ectopic expression in Arabidopsis triggers drought tolerance. The use of PCR to clone the HaHB4 coding sequence for wheat transformation caused unprogrammed mutations producing subtle differences in its activation ability in yeast. Transgenic wheat plants carrying a mutated version of HaHB4 were tested in 37 field experiments. A selected transgenic line yielded 6% more (P<0.001) and had 9.4% larger water use efficiency (P<0.02) than its control across the evaluated environments. Differences in grain yield between cultivars were explained by the 8% improvement in grain number per square meter (P<0.0001), and were more pronounced in stress (16% benefit) than in non-stress conditions (3% benefit), reaching a maximum of 97% in one of the driest environments. Increased grain number per square meter of transgenic plants was accompanied by positive trends in spikelet numbers per spike, tillers per plant, and fertile florets per plant. The gene transcripts associated with abiotic stress showed that HaHB4's action was not dependent on the response triggered either by RD19 or by DREB1a, traditional candidates related to water deficit responses. HaHB4 enabled wheat to show some of the benefits of a species highly adapted to water scarcity, especially in marginal regions characterized by frequent droughts.


Asunto(s)
Helianthus/genética , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Triticum/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Triticum/genética
18.
Plant Sci ; 271: 143-150, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29650152

RESUMEN

The bHLH family is composed by canonical and non-canonical transcription factors (TFs) that differ in the presence or absence of their DNA-binding domain, respectively. Since both types of bHLH proteins are able to dimerize, their relative abundance impacts their biological activity. Among this TF family BEE and IBH are canonical and non-canonical bHLHs, respectively and previous reports indicated that BEE2 and IBH1 dimerize. Wondering whether BEE TFs participate in the abiotic stress response and how the dimerization with IBH1 could regulate their role in Arabidopsis, double bee1/bee2 and triple bee1/bee2/bee3 mutants were tested under salinity and drought stresses. The bee1/bee2/bee3 mutant showed an enhanced tolerance whereas the double mutant behaved similar to wild type plants. These results indicated that BEE genes play a role in the stress response and also put in evidence the redundancy within the BEE family. Moreover, ectopic expression of IBH1 on different mutant backgrounds improved plant tolerance to abiotic stress, independently of the background. However, the yield of these transgenic plants was penalized with abortive seeds. Our results suggest that BEE genes are negative regulators of physiological responses to abiotic stress whereas IBH1 is a positive modulator via different pathways, one of them involving BEE TFs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Arabidopsis , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Deshidratación , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
19.
Plant Signal Behav ; 13(3): e1448334, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29509063

RESUMEN

Venation patterning is a taxonomic attribute for classification of plants and it also plays a role in the interaction of plants with the environment. Despite its importance, the molecular physiology controlling this aspect of plant development is still poorly understood. Auxin plays a central role modulating the final vein network and patterning. This addendum discusses recent findings on the role of homeodomain-leucine zipper (HD-Zip) transcription factors on the regulation of leaf venation patterning. Moreno-Piovano et al. reported that ectopic expression of a sunflower HD-Zip I gene, HaHB4, increased the asymmetry of leaf venation. Even more, this work showed that auxin transport in the leaf through LAX carriers controls venation patterning. Here, we provide evidence indicating that some Arabidopsis thaliana HD-Zip I genes play a role in the determination of the final leaf venation patterning. We propose that these genes contribute to regulate vein patterning, likely controlling auxin homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Tipificación del Cuerpo , Proteínas de Homeodominio/metabolismo , Leucina Zippers , Hojas de la Planta/embriología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Tipificación del Cuerpo/genética , Genes de Plantas , Mutación/genética , Hojas de la Planta/genética
20.
Ann Bot ; 120(4): 577-590, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28981582

RESUMEN

Background and Aims: The symmetry of venation patterning in leaves is highly conserved within a plant species. Auxins are involved in this process and also in xylem vasculature development. Studying transgenic Arabidopsis plants ectopically expressing the sunflower transcription factor HaHB4, it was observed that there was a significant lateral-vein asymmetry in leaves and in xylem formation compared to wild type plants. To unravel the molecular mechanisms behind this phenotype, genes differentially expressed in these plants and related to auxin influx were investigated. Methods: Candidate genes responsible for the observed phenotypes were selected using a co-expression analysis. Single and multiple mutants in auxin influx carriers were characterized by morphological, physiological and molecular techniques. The analysis was further complemented by restoring the wild type (WT) phenotype by mutant complementation studies and using transgenic soybean plants ectopically expressing HaHB4 . Key Results: LAX2 , down-regulated in HaHB4 transgenic plants, was bioinformatically chosen as a candidate gene. The quadruple mutant aux1 lax1 lax2 lax3 and the single mutants, except lax1, presented an enhanced asymmetry in venation patterning. Additionally, the xylem vasculature of the lax2 mutant and the HaHB4 -expressing plants differed from the WT vasculature, including increased xylem length and number of xylem cell rows. Complementation of the lax2 mutant with the LAX2 gene restored both lateral-vein symmetry and xylem/stem area ratio in the stem, showing that auxin homeostasis is required to achieve normal vascular development. Interestingly, soybean plants ectopically expressing HaHB4 also showed an increased asymmetry in the venation patterning, accompanied by the repression of several GmLAX genes. Conclusions: Auxin influx carriers have a significant role in leaf venation pattering in leaves and, in particular, LAX2 is required for normal xylem development, probablt controlling auxin homeostasis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Transporte de Membrana/fisiología , Hojas de la Planta/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/anatomía & histología , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Glycine max/anatomía & histología , Glycine max/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA