Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cureus ; 16(4): e58048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38738003

RESUMEN

Anastomotic stricture has an incidence rate of 6-10% and typically manifests three to six months after colorectal surgery. Immediate postoperative stricture is exceedingly rare and underreported in the literature. The possible etiology includes poor circulation, leakage, local inflammation, or infection. We report a rare case of a patient with total obstruction by mucus on the anastomosis site on postoperation day two. We used a sigmoidoscope to remove mucus material, following which the patient recovered well.

2.
Theranostics ; 13(13): 4650-4666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649607

RESUMEN

Background: Multigene mutations in colorectal cancer (CRC), including KRAS, BRAF, and p53, afford high metastatic ability and resistance to EGFR-targeting therapy. Understanding the molecular mechanisms regulating anti-EGFR-resistant CRC metastasis can improve CRC therapy. This study aimed to investigate the effects of IL-8 and the activation of KRAS on reactive oxygen species (ROS) production and metastasis of hyperlipidemia-associated CRC harboring mutations of KRAS and p53. Methods: The cytokine array analysis determined the up-expression of secreted factors, including IL-8. The clinical relevance of the relationship between IL-8 and angiopoietin-like 4 (ANGPTL4) was examined in CRC patients from National Cheng Kung University Hospital and TCGA dataset. Expressions of IL-8, ANGPTL4, NADPH oxidase 4 (NOX4), and epithelial-mesenchymal transition (EMT) markers in free fatty acids (FFAs)-treated KRAS/p53 mutant CRC cells were determined. The hyperlipidemia-triggered metastatic ability of CRC cells under treatments of antioxidants, statin, and cetuximab or knockdown of IL-8, KRAS, and EGFR was evaluated in vitro and in vivo. In addition, the effects of antioxidants and depletion of IL-8 and KRAS on the correlation between ROS production and hyperlipidemia-promoted CRC metastasis were also clarified. Results: In this study, we found that free fatty acids promoted KRAS/p53-mutant but not single-mutant or non-mutant CRC cell metastasis. IL-8, the most abundant secreted factor in KRAS/p53-mutant cells, was correlated with the upregulation of NOX4 expression and ROS production under oleic acid (OA)-treated conditions. In addition, the metastasis of KRAS/p53-mutant CRC relies on the ANGPTL4/IL-8/NOX4 axis and the activation of KRAS. The antioxidants and inactivation of KRAS also inhibited OA-induced EMT and metastasis. Although KRAS mediated EGF- and OA-promoted CRC cell invasion, the inhibition of EGFR did not affect OA-induced ANGPTL4/IL-8/NOX4 axis and CRC metastasis. The high-fat diet mice fed with vitamin E and statin or in IL-8-depleted cells significantly inhibited tumor extravasation and metastatic lung growth of CRC. Conclusion: The antioxidants, statins, and targeting IL-8 may provide better outcomes for treating metastatic CRC that harbors multigene mutations and anti-EGFR resistance.


Asunto(s)
Neoplasias del Colon , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Ratones , Anticuerpos , Antioxidantes , Ácidos Grasos no Esterificados , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Interleucina-8 , Ácidos Oléicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Especies Reactivas de Oxígeno , Proteína p53 Supresora de Tumor/genética , Humanos
3.
Cell Commun Signal ; 21(1): 172, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430297

RESUMEN

BACKGROUND: Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS: Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS: We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS: Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Humanos , Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-akt , Retroalimentación , Proteínas Quinasas S6 Ribosómicas 70-kDa , Fosfatidilinositol 3-Quinasas , Fluorouracilo
4.
Mol Carcinog ; 62(7): 951-962, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37014154

RESUMEN

Sprouty2 (SPRY2) is known to inhibit the RAS/MAPK/ERK pathway, and is a potential study target for cancer. The effect of SPRY2 in colorectal cancer (CRC) and whether it is influenced by KRAS mutation are not known. We manipulated SPRY2 gene expression and used an activating KRAS-mutant plasmid to determine its effect on CRC cell function in vitro and/or in vivo. We performed SPRY2 immunohistochemical staining in 143 CRC specimens and analyzed the staining results with various clinicopathological characteristics in relation to KRAS mutation status. SPRY2 knockdown in Caco-2 cells carrying the wild-type (WT) KRAS gene upregulated phosphorylated ERK (p-ERK) levels and increased cell proliferation in vitro, but inhibited cell invasion. However, SPRY2 knockdown in SW480 cells (activating KRAS mutant) or Caco-2 cells transfected with KRAS-mutant plasmid did not significantly alter p-ERK levels, cell proliferation, or invasion. The xenografts of SPRY2-knockdown Caco-2 cells were larger with less deep muscle invasion than those of control cells. The clinical cohort study revealed a positive association of SPRY2 protein expression with pT status, lymphovascular invasion, and perineural invasion in KRAS-WT CRCs. However, the associations were not observed in KRAS-mutant CRCs. Interestingly, high SPRY2 expression was related to shorter cancer-specific survival in both KRAS-WT and KRAS-mutant CRC patients. Our study demonstrated the dual role of SPRY2 as an inhibitor of RAS/ERK-driven proliferation and as a promoter of cancer invasion in KRAS-WT CRC. SPRY2 may promote the invasion and progression of KRAS-WT CRC, and might also enhance KRAS-mutant CRC progression through pathways other than invasion.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Células CACO-2 , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias Colorrectales/patología , Proliferación Celular , Mutación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362062

RESUMEN

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that can regulate immune responses in the tumor microenvironment (TME); however, the clinical applications of PD-L1 in early-stage colorectal cancer (CRC) remain unclear. In this study, we aimed to investigate the relationship between PD-L1 expression and survival outcome and explore its relevant immune responses in CRC. PD-L1 expression was evaluated by immunohistochemical staining to determine the tumor proportion score and combined positive score (CPS) in a Taiwanese CRC cohort. The oncomine immune response research assay was conducted for immune gene expression analyses. CRC datasets from the TCGA database were reappraised for PD-L1-associated gene enrichment analyses using GSEA. The high expression of PD-L1 (CPS ≥ 5) was associated with longer recurrence-free survival (p = 0.031) and was an independent prognostic factor as revealed by multivariate analysis. High PD-L1 expression was related to six immune-related gene signatures, and CXCL9 is the most significant overexpressed gene in differential analyses. High CXCL9 expression correlated with increased infiltration levels of immune cells in the TME, including CD8+ T lymphocytes and M1 macrophages. These findings suggest that high PD-L1 expression is a prognostic factor of early-stage CRC, and CXCL9 may play a key role in regulating PD-L1 expression.


Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Humanos , Antígeno B7-H1/metabolismo , Linfocitos Infiltrantes de Tumor , Microambiente Tumoral/genética , Neoplasias Colorrectales/patología
7.
Br J Cancer ; 127(9): 1615-1628, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35999268

RESUMEN

BACKGROUND: Colorectal cancer (CRC), the most common cancer type, causes high morbidity and mortality. Patients who develop drug resistance to oxaliplatin-based regimens have short overall survival. Thus, identifying molecules involved in the development of oxaliplatin resistance is critical for designing therapeutic strategies. METHODS: A proteomic screen was performed to reveal altered protein kinase phosphorylation in oxaliplatin-resistant (OR) CRC tumour spheroids. The function of CHK2 was characterised using several biochemical techniques and evident using in vitro cell and in vivo tumour models. RESULTS: We revealed that the level of phospho-CHK2(Thr68) was elevated in OR CRC cells and in ~30% of tumour samples from patients with OR CRC. We demonstrated that oxaliplatin activated several phosphatidylinositol 3-kinase-related kinases (PIKKs) and CHK2 downstream effectors and enhanced CHK2/PARP1 interaction to facilitate DNA repair. A phosphorylation mimicking CHK2 mutant, CHK2T68D, but not a kinase-dead CHK2 mutant, CHK2D347A, promoted DNA repair, the CHK2/PARP1 interaction, and cell growth in the presence of oxaliplatin. Finally, we showed that a CHK2 inhibitor, BML-277, reduced protein poly(ADP-ribosyl)ation (PARylation), FANCD2 monoubiquitination, homologous recombination and OR CRC cell growth in vitro and in vivo. CONCLUSION: Our findings suggest that CHK2 activity is critical for modulating oxaliplatin response and that CHK2 is a potential therapeutic target for OR CRC.


Asunto(s)
Quinasa de Punto de Control 2 , Neoplasias Colorrectales , Proteómica , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Fosfatidilinositol 3-Quinasas , Proteínas Quinasas , Quinasa de Punto de Control 2/metabolismo
8.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454802

RESUMEN

To evaluate whether adjusted computed tomography (CT) scan image-based radiomics combined with immune genomic expression can achieve accurate stratification of cancer recurrence and identify potential therapeutic targets in stage III colorectal cancer (CRC), this cohort study enrolled 71 patients with postoperative stage III CRC. Based on preoperative CT scans, radiomic features were extracted and selected to build pixel image data using covariate-adjusted tensor classification in the high-dimension (CATCH) model. The differentially expressed RNA genes, as radiomic covariates, were identified by cancer recurrence. Predictive models were built using the pixel image and immune genomic expression factors, and the area under the curve (AUC) and F1 score were used to evaluate their performance. Significantly adjusted radiomic features were selected to predict recurrence. The association between the significantly adjusted radiomic features and immune gene expression was also investigated. Overall, 1037 radiomic features were converted into 33 × 32-pixel image data. Thirty differentially expressed genes were identified. We performed 100 iterations of 3-fold cross-validation to evaluate the performance of the CATCH model, which showed a high sensitivity of 0.66 and an F1 score of 0.69. The area under the curve (AUC) was 0.56. Overall, ten adjusted radiomic features were significantly associated with cancer recurrence in the CATCH model. All of these methods are texture-associated radiomics. Compared with non-adjusted radiomics, 7 out of 10 adjusted radiomic features influenced recurrence-free survival. The adjusted radiomic features were positively associated with PECAM1, PRDM1, AIF1, IL10, ISG20, and TLR8 expression. We provide individualized cancer therapeutic strategies based on adjusted radiomic features in recurrent stage III CRC. Adjusted CT scan image-based radiomics with immune genomic expression covariates using the CATCH model can efficiently predict cancer recurrence. The correlation between adjusted radiomic features and immune genomic expression can provide biological relevance and individualized therapeutic targets.

9.
Thorac Cancer ; 13(11): 1744-1746, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35470568

RESUMEN

Surgical management of post-esophagojejunostomy aortoesophageal fistula (AEF) has been scarcely reported, but is universally fatal. This report described a case of AEF after total gastrectomy with Roux-en-Y esophagojejunostomy and adjuvant chemoradiotherapy for gastric cardiac cancer. A three-stage hybrid approach was used to successfully manage this complication. First, thoracic endovascular aortic repair curbed bleeding. Second, radical fistula resection eradicated infected areas and adjacent structures. Third, esophageal reconstruction using an ileocolonic conduit restored gastrointestinal continuity. This strategy could be safely feasible for managing post-esophagojejunostomy AEF.


Asunto(s)
Enfermedades de la Aorta , Fístula Esofágica , Neoplasias Gástricas , Anastomosis en-Y de Roux/efectos adversos , Anastomosis Quirúrgica/efectos adversos , Enfermedades de la Aorta/complicaciones , Enfermedades de la Aorta/cirugía , Fístula Esofágica/etiología , Fístula Esofágica/cirugía , Gastrectomía/efectos adversos , Humanos , Neoplasias Gástricas/cirugía
10.
Int J Surg Case Rep ; 93: 106990, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35367948

RESUMEN

Inflammatory myofibroblastic tumors (IMTs) are a rare soft tissue neoplasm, usually seen in children and adolescents, which are predominantly found in the pulmonary region. The extrapulmonary multicentric lesions are exceedingly rare. We herein report the case of a 19-year-old female who developed acute bowel obstruction which caused by multicentric IMTs. We described her clinical presentations, operative finding, and pathological finding.

11.
Biomedicines ; 10(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35203549

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent malignant diseases worldwide. Risk prediction for tumor recurrence is important for making effective treatment decisions and for the survival outcomes of patients with CRC after surgery. Herein, we aimed to explore a prediction algorithm and the risk factors for postoperative tumor recurrence using a machine learning (ML) approach with standardized pathology reports for patients with stage II and III CRC. METHODS: Pertinent clinicopathological features were compiled from medical records and standardized pathology reports of patients with stage II and III CRC. Four ML models based on logistic regression (LR), random forest (RF), classification and regression decision trees (CARTs), and support vector machine (SVM) were applied for the development of the prediction algorithm. The area under the curve (AUC) of the ML models was determined in order to compare the prediction accuracy. Genomic studies were performed using a panel-targeted next-generation sequencing approach. RESULTS: A total of 1073 patients who received curative intent surgery at the National Cheng Kung University Hospital between January 2004 and January 2019 were included. Based on conventional statistical methods, chemotherapy (p = 0.003), endophytic tumor configuration (p = 0.008), TNM stage III disease (p < 0.001), pT4 (p < 0.001), pN2 (p < 0.001), increased numbers of lymph node metastases (p < 0.001), higher lymph node ratios (LNR) (p < 0.001), lymphovascular invasion (p < 0.001), perineural invasion (p < 0.001), tumor budding (p = 0.004), and neoadjuvant chemoradiotherapy (p = 0.025) were found to be correlated with the tumor recurrence of patients with stage II-III CRC. While comparing the performance of different ML models for predicting cancer recurrence, the AUCs for LR, RF, CART, and SVM were found to be 0.678, 0.639, 0.593, and 0.581, respectively. The LR model had a better accuracy value of 0.87 and a specificity value of 1 in the testing set. Two prognostic factors, age and LNR, were selected by multivariable analysis and the four ML models. In terms of age, older patients received fewer cycles of chemotherapy and radiotherapy (p < 0.001). Right-sided colon tumors (p = 0.002), larger tumor sizes (p = 0.008) and tumor volumes (p = 0.049), TNM stage II disease (p < 0.001), and advanced pT3-4 stage diseases (p = 0.04) were found to be correlated with the older age of patients. However, pN2 diseases (p = 0.005), lymph node metastasis number (p = 0.001), LNR (p = 0.004), perineural invasion (p = 0.018), and overall survival rate (p < 0.001) were found to be decreased in older patients. Furthermore, PIK3CA and DNMT3A mutations (p = 0.032 and 0.039, respectively) were more frequently found in older patients with stage II-III CRC compared to their younger counterparts. CONCLUSIONS: This study demonstrated that ML models have a comparable predictive power for determining cancer recurrence in patients with stage II-III CRC after surgery. Advanced age and high LNR were significant risk factors for cancer recurrence, as determined by ML algorithms and multivariable analyses. Distinctive genomic profiles may contribute to discrete clinical behaviors and survival outcomes between patients of different age groups. Studies incorporating complete molecular and genomic profiles in cancer prediction models are beneficial for patients with stage II-III CRC.

12.
Diagnostics (Basel) ; 12(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35204406

RESUMEN

The impact of germline variants on the regulation of the expression of tumor microenvironment (TME)-based immune response genes remains unclear. Expression quantitative trait loci (eQTL) provide insight into the effect of downstream target genes (eGenes) regulated by germline-associated variants (eVariants). Through eQTL analyses, we illustrated the relationships between germline eVariants, TME-based immune response eGenes, and clinical outcomes. In this study, both RNA sequencing data from primary tumor and germline whole-genome sequencing data were collected from patients with stage III colorectal cancer (CRC). Ninety-nine high-risk subjects were subjected to immune response gene expression analyses. Seventy-seven subjects remained for further analysis after quality control, of which twenty-two patients (28.5%) experienced tumor recurrence. We found that 65 eQTL, including 60 germline eVariants and 22 TME-based eGenes, impacted the survival of cancer patients. For the recurrence prediction model, 41 differentially expressed genes (DEGs) achieved the best area under the receiver operating characteristic curve of 0.93. In total, 19 survival-associated eGenes were identified among the DEGs. Most of these genes were related to the regulation of lymphocytes and cytokines. A high expression of HGF, CCR5, IL18, FCER1G, TDO2, IFITM2, and LAPTM5 was significantly associated with a poor prognosis. In addition, the FCER1G eGene was associated with tumor invasion, tumor nodal stage, and tumor site. The eVariants that regulate the TME-based expression of FCER1G, including rs2118867 and rs12124509, were determined to influence survival and chromatin binding preferences. We also demonstrated that FCER1G and co-expressed genes in TME were related to the aggregation of leukocytes via pathway analysis. By analyzing the eQTL from the cancer genome using germline variants and TME-based RNA sequencing, we identified the eQTL in immune response genes that impact colorectal cancer characteristics and survival.

13.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943546

RESUMEN

Systemic characterization of genomic alterations into signaling pathways helps to understand the molecular pathogenies of colorectal cancer; however, their clinical implications remain unclear. Here, 128 patients with metastatic colorectal cancer (mCRC) receiving targeted next generation sequencing were retrospectively enrolled to analyze the impact of altered oncogenic pathways on clinical outcome. The datasets from Memorial Sloan Kettering Cancer Center were used for validation. In 123 patients with non-MSI-high tumor, the most common mutated gene was TP53 (84.6%), followed by APC (78.0%), KRAS (49.6%), and SMAD4 (22.8%). When mutated genes were allocated into signaling pathways defined as The Cancer Genome Atlas Pan-Cancer Analysis Project, alterations of cell cycle, Wnt, p53, RTK-RAS, PI3K, TGF-ß, Notch, and Myc pathways were identified in 88%, 87%, 85%, 75%, 28%, 26%, 17%, and 10% of mCRC tissues, respectively. The survival analyses revealed that Myc and TGF-ß pathway alterations were associated with a shorter overall survival (OS) (hazard ratio [HR]: 2.412; 95% confidence interval [CI]: 1.139-5.109; p = 0.018 and HR: 2.754; 95% CI: 1.044-7.265; p = 0.033, respectively). The negative prognostic impact of altered TGF-ß pathway was maintained in patients receiving an anti-EGFR antibody. The OS of patients with mCRC carrying MYC and BRAF mutation was shorter than those with either MYC or BRAF mutation (HR: 4.981, 95% CI: 0.296-83.92; p = 0.02). These findings have clinical implications, such as prognosis prediction, treatment guidance, and molecular-targeted therapy development.

14.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34503126

RESUMEN

Tumor heterogeneity results in more than 50% of hypermutated cancers failing to respond to standard immunotherapy. There are numerous challenges in terms of drug resistance, therapeutic strategies, and biomarkers in immunotherapy. In this study, we analyzed primary tumor samples from 533 cancer patients with six different cancer types using deep targeted sequencing and gene expression data from 78 colorectal cancer patients, whereby driver mutations, mutational signatures, tumor-associated neoantigens, and molecular cancer evolution were investigated. Driver mutations, including RET, CBL, and DDR2 gene mutations, were identified in the hypermutated cancers. Most hypermutated endometrial and pancreatic cancer patients carry genetic mutations in EGFR, FBXW7, and PIK3CA that are linked to immunotherapy resistance, while hypermutated head and neck cancer patients carry genetic mutations associated with better treatment responses, such as ATM and BRRCA2 mutations. APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and DNA repair defects are mutational drivers that are signatures for hypermutated cancer. Cancer driver mutations and other mutational signatures are associated with sensitivity or resistance to immunotherapy, representing potential genetic markers in hypermutated cancers. Using computational prediction, we identified NF1 p.T700I and NOTCH1 p.V2153M as tumor-associated neoantigens, representing potential therapeutic targets for immunotherapy. Sequential mutations were used to predict hypermutated cancers based on genomic evolution. Using a logistic model, we achieved an area under the curve (AUC) = 0.93, accuracy = 0.93, and sensitivity = 0.81 in the testing set. The sequential patterns were distinct among the six cancer types, and the sequential mutation order of MSH2 and the coexisting BRAF genetic mutations influenced the hypermutated phenotype. The TP53~MLH1 and NOTCH1~TET2 sequential mutations impacted colorectal cancer survival (p-value = 0.027 and 0.0001, respectively) by reducing the expression of PTPRCAP (p-value = 1.06 × 10-6) and NOS2 (p-value = 7.57 × 10-7) in immunity. Sequential mutations are significant for hypermutated cancers, which are characterized by mutational heterogeneity. In addition to driver mutations and mutational signatures, sequential mutations in cancer evolution can impact hypermutated cancers. They characterize potential responses or predictive markers for hypermutated cancers. These data can also be used to develop hypermutation-associated drug targets and elucidate the evolutionary biology of cancer survival. In this study, we conducted a comprehensive analysis of mutational patterns, including sequential mutations, and identified useful markers and therapeutic targets in hypermutated cancer patients.

15.
Front Oncol ; 11: 589673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816227

RESUMEN

The analysis of cell-free DNA (cfDNA) is rapidly emerging as a powerful approach to guide the clinical care of cancer patients. Several comprehensive cfDNA assays designed to detect mutations across several genes are now available. Here, we analyzed the use of a cfDNA panel in colorectal cancer (CRC) patients. Twenty-eight CRC patients with relapse or metastatic disease and 31 patients with no evidence of disease (NED) were enrolled. Genomic alterations in cfDNA were analyzed by the Oncomine™ Pan-Cancer Cell-Free Assay that detects hotspot mutations, small indels, copy number changes, and gene fusions across 52 genes. In the NED group, genomic alterations in cfDNA were detected in 12/31 patients (38.7%). The detection of alterations was more common in patients who were ≥60 years old, and the most common genomic alteration was a TP53 mutation. Fifty percent of the TP53 mutations were frequently or very frequently found in human cancers. Among 28 patients with relapse or metastatic disease, 22 (78.6%) had genomic alterations in cfDNA. The alterations were detected most frequently in TP53 (n = 10), followed by KRAS (n = 9). Actionable targets for CRC, including ERBB2 amplification and BRAF mutations, could be identified by this cfDNA assay. Compared with mutational profiling routinely analyzed using tumor samples, several additional targets with currently available therapies, including IDH1, IDH2, and PDGFRA mutations, were discovered. The cfDNA assay could identify potentially actionable targets for CRC. Identifying how to filter out cancer-like genomic alterations not derived from tumors remains a challenge.

16.
BMC Cancer ; 21(1): 217, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653301

RESUMEN

BACKGROUND: Certain sequences of genomic mutations can lead to cancer formation and affect treatment outcomes and drug resistance. We constructed a cancer evolutionary tree using bulk-targeted deep sequencing to explore the impact of sequential and co-occurring somatic mutations on patients with stage III colorectal cancer (CRC). METHODS: A total of 108 stage III CRC patients from National Cheng Kung University Hospital (NCKUH) were recruited for this study between Jan. 2014 and Jan. 2019. Clinical information and tumor-targeted deep sequencing data were collected. Phylogenetic trees were reconstructed for evolutionary trajectories. We used a machine learning model for survival analysis. RESULTS: Six sequential somatic mutations stratified patients into seven subgroups based on survival. Patients carrying sequential germline followed by DNA damage response-related ATM or BRCA2 somatic mutations or non-TP53, APC somatic mutations had a better outcome than those without such mutations. The 4-year recurrence-free survival (RFS) probability was 88% in the low-risk group (G1) and 46% in the high-risk group (G2) (log-rank p-value 2e-05). The predictive efficacy by the area under the curve (AUC) was 0.73, 0.7, 0.797, and 0.88 at 2, 4, 6, and 8 years, respectively. The mutation status of mismatch repair (MMR) genes was not associated with RFS. Different genomic features were found between the groups. The orders of APC, KRAS and APC, BRCA2 sequential somatic mutations were associated with clinical outcomes. The occurrence of somatic mutations in BRCA2, such as TP53 somatic mutations, affected recurrence-free survival. CONCLUSIONS: According to the evolution model, DNA damage response (DDR)-related ATM or BRCA2 somatic mutations are promising biomarkers for assessing the response of stage III CRC patients to oxaliplatin-based chemotherapy. The sequential order and co-occurring DDR somatic mutations are associated with recurrence-free survival.


Asunto(s)
Neoplasias Colorrectales/genética , Daño del ADN , Mutación , Oxaliplatino/administración & dosificación , Proteína de la Poliposis Adenomatosa del Colon/genética , Anciano , Proteína BRCA2/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Filogenia , Proteínas Proto-Oncogénicas p21(ras)/genética
17.
Front Oncol ; 10: 588557, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194745

RESUMEN

Many studies failed to demonstrate benefit from the addition of targeted agents to current standard adjuvant FOLFOX chemotherapy in stage III colorectal cancer (CRC) patients. Intratumor heterogeneity may foster the resistant subclones and leads to cancer recurrence. Here, we built a cancer evolution model and applied machine learning analysis to identify potential therapeutic targets. Among 78 CRC cases, whole-genome (WGS) and deep targeted sequencing data generated from paired blood and primary tumor were used for phylogenetic tree reconstruction. Genetic alterations in the PI3K/AKT, and RTK oncogenic signaling pathways were commonly detected in founding clones. The dominant subclones frequently exhibited dysregulations in the TP53, FBXW7/NOTCH1 tumor suppression, and DNA repair pathways. Fourteen genetic mutations were simultaneously selected by random forest and LASSO methods. The logistic regression model had better accuracy (79%), precision (70%), and recall (65%) and area under the curve (AUC) (82%) for cancer recurrence prediction. Three genes, including MYO18A in the founding clone, FBXW7, and ATM in the dominant subclone, affected the prognosis were selected simultaneously by different feature sets. The in vitro studies, HCT-116 cells transfected with MYO18A siRNA demonstrated a significant reduction in cell migration activity by 20-40%. These results indicate that MYO18A plays a crucial role in the migration of human CRC cells. The cancer evolution model revealed the critical mutations in the founding and dominant subclones. They can be used to predict clinical outcomes and the development of novel therapeutic targets for stage III CRC.

18.
Mol Cancer ; 19(1): 150, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106181

RESUMEN

Circulating cell-free DNA (cfDNA) analysis is an important tool for cancer monitoring. The patient-specific mutations identified in colorectal cancer (CRC) tissues are usually used to design the cfDNA analysis. Despite high specificity in predicting relapse, the sensitivity in most studies is around 40-50%. To improve this weakness, we designed a cfDNA panel according to the CRC genomic landscape and recurrent-specific mutations. The pathological variants in cfDNA samples from 60 CRC patients were studied by a next-generation sequencing (NGS) method incorporating the dual molecular barcode. Interestingly, patients in the disease positive group had a significantly higher cfDNA concentration than those in the disease negative group. Based on receiver operating characteristic analysis, the cfDNA concentration of 7 ng/mL was selected into the analytical workflow. The sensitivity in determining the disease status was 72.4%, which represented a considerable improvement on prior studies, and the specificity remained high at 80.6%. Compared to standard imaging and laboratory studies, earlier detection of residual disease and clinical benefits were shown on two cases by this cfDNA assay. We conclude this integrative framework of cfDNA analytical pipeline with a satisfactory sensitivity and specificity could be used in postoperative CRC surveillance.


Asunto(s)
Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Neoplasias Colorrectales/patología , Neoplasias Pulmonares/secundario , Mutación , Recurrencia Local de Neoplasia/patología , Anciano , Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Masculino , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/cirugía , Pronóstico
19.
Cancer Manag Res ; 11: 7867-7875, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692488

RESUMEN

PURPOSE: Human epidermal growth factor receptor 2 (HER2) is an emerging therapeutic target in colorectal cancer (CRC). Currently, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) have been used to determine HER2-positive CRCs; however, the clinical utility of next-generation sequencing (NGS)-based techniques for determining HER2 status in CRC has been limited. Here, we detail our experience regarding the assessment of HER2 alterations in a CRC cohort. MATERIALS AND METHODS: We prospectively enrolled 73 CRC patients who underwent surgery and received adjuvant oxaliplatin treatment. We then examined HER2 alterations using the Oncomine Comprehensive Assay version 1, as well as clinical outcomes, in this cohort. RESULTS: Using the NGS-based assay, HER2 copy number gains in 12 of 73 CRCs were determined to range from 2.74 to 92.62. Of these 12 tumors, 6 had HER2 high-level copy number gain (92.6, 57.9, 57.0, 52.0, 35.2, and 8.42) and were all defined as HER2-positive CRC using HERACLES Diagnostic Criteria. Nevertheless, other 6 patients with low-level copy number gain (ranging from 2.74 to 3.04) and the remaining 61 patients without increase in HER2 copy number were all HER2-negative. Among the 6 HER2-positive CRCs, KRAS and PIK3CA mutations were detected in 1 (17%; G13D) and 2 (33.3%; 1 Q546R and 1 H1047R) patients, respectively. Moreover, 2 of the 6 (33.3%) HER2-positive patients had recurrent disease, while one patient had a partial response after anti-HER2 therapy. CONCLUSION: NGS-based tools could assist in the simultaneous detection of HER2 and other genomic alterations in patients with CRC. Only CRCs with HER2 high-level copy number gain were HER2-postive by current diagnostic criteria.

20.
Int J Colorectal Dis ; 34(10): 1815-1818, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31512021

RESUMEN

INTRODUCTION: Intussusception, which is common in pediatric patients but rare in adults with leukemia, usually presents with an intralumenal lesion as a lead point in adults. CASE REPORT: We herein report the case of a 38-year-old female who developed right lower quadrant abdominal pain and fever on day 16 of chemotherapy. Abdominal computed tomography showed ileocecal intussusception. The patient underwent surgery, and the definitive pathological diagnosis was typhlitis leading to intussusception. Albeit very rare in adults, typhlitis-induced intussusception should be suspected in those with leukemia presenting with abdominal pain.


Asunto(s)
Intususcepción/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Tiflitis/complicaciones , Adulto , Femenino , Humanos , Intususcepción/diagnóstico por imagen , Intususcepción/cirugía , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Tiflitis/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...