Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585811

RESUMEN

Purpose: To identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). Methods: We coupled phenotyping with exome or genome sequencing of 467 pedigrees with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions. Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. Results: Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43/467 probands (9.2%), and prioritized variants of uncertain significance in 70/467 additional probands (15.0%). These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (e.g., MYH10, KIF21B, TGFBR2, TUBB6), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (e.g., CDK13, TGFB2), genes with no reported association with oCCDDs or the syndromic phenotypes (e.g., TUBA4A, KIF5C, CTNNA1, KLB, FGF21), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. Conclusion: This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.

2.
Genet Med ; 26(6): 101119, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38465576

RESUMEN

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.

3.
JAMA Ophthalmol ; 142(3): 243-247, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358749

RESUMEN

Importance: Strabismus is a common ocular disorder of childhood. There is a clear genetic component to strabismus, but it is not known if esotropia and exotropia share genetic risk factors. Objective: To determine whether genetic duplications associated with esotropia are also associated with exotropia. Design, Setting, and Participants: This was a cross-sectional study conducted from November 2005 to December 2023. Individuals with constant or intermittent exotropia of any magnitude or a history of surgery for exotropia were recruited from pediatric ophthalmic practices. Data were analyzed from March to December 2023. Exposure: Genetic duplication. Main Outcomes and Measures: Presence of genetic duplications at 2p11.2, 4p15.2, and 10q11.22 assessed by digital droplet polymerase chain reaction. Orthoptic measurements and history of strabismus surgery were performed. Results: A total of 234 individuals (mean [SD] age, 19.5 [19.0] years; 127 female [54.3%]) were included in this study. The chromosome 2 duplication was present in 1.7% of patients with exotropia (4 of 234; P = .40), a similar proportion to the 1.4% of patients with esotropia (23 of 1614) in whom it was previously reported and higher than the 0.1% of controls (4 of 3922) previously reported (difference, 1.6%; 95% CI, 0%-3.3%; P < .001). The chromosome 4 duplication was present in 3.0% of patients with exotropia (7 of 234; P = .10), a similar proportion to the 1.7% of patients with esotropia (27 of 1614) and higher than the 0.2% of controls (6 of 3922) in whom it was previously reported (difference, 2.8%; 95% CI, 0.6%-5.0%; P < .001). The chromosome 10 duplication was present in 6.0% of patients with exotropia (14 of 234; P = .08), a similar proportion to the 4% of patients with esotropia (64 of 1614) and higher than the 0.4% of controls (18 of 3922) in whom it was previously reported (difference, 5.6%; 95% CI, 2.5%-8.6%; P < .001). Individuals with a duplication had higher mean (SD) magnitude of deviation (31 [13] vs 22 [14] prism diopters [PD]; difference, 9 PD; 95% CI, 1-16 PD; P = .03), were more likely to have constant (vs intermittent) exotropia (70% vs 29%; difference, 41%; 95% CI, 20.8%-61.2%; P < .001), and had a higher rate of exotropia surgery than those without a duplication (58% vs 34%; difference, 24%; 95% CI, 3%-44%; P = .02). Conclusions and Relevance: In this cross-sectional study, results suggest that the genetic duplications on chromosomes 2, 4, and 10 were risk factors for exotropia as well as esotropia. These findings support the possibility that esotropia and exotropia have shared genetic risk factors. Whether esotropia or exotropia develops in the presence of these duplications may be influenced by other shared or independent genetic variants or by environmental factors.


Asunto(s)
Esotropía , Exotropía , Estrabismo , Humanos , Niño , Femenino , Adulto Joven , Adulto , Esotropía/genética , Esotropía/cirugía , Exotropía/genética , Estudios Transversales , Variaciones en el Número de Copia de ADN , Músculos Oculomotores/cirugía , Genotipo , Fenotipo
4.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386251

RESUMEN

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Asunto(s)
Parálisis Facial , Animales , Ratones , Parálisis Facial/genética , Parálisis Facial/congénito , Parálisis Facial/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis , Neuronas Eferentes
5.
medRxiv ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38234731

RESUMEN

Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.

6.
Hum Mutat ; 43(4): 487-498, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35077597

RESUMEN

A proper interaction between muscle-derived collagen XXV and its motor neuron-derived receptors protein tyrosine phosphatases σ and δ (PTP σ/δ) is indispensable for intramuscular motor innervation. Despite this, thus far, pathogenic recessive variants in the COL25A1 gene had only been detected in a few patients with isolated ocular congenital cranial dysinnervation disorders. Here we describe five patients from three unrelated families with recessive missense and splice site COL25A1 variants presenting with a recognizable phenotype characterized by arthrogryposis multiplex congenita with or without an ocular congenital cranial dysinnervation disorder phenotype. The clinical features of the older patients remained stable over time, without central nervous system involvement. This study extends the phenotypic and genotypic spectrum of COL25A1 related conditions, and further adds to our knowledge of the complex process of intramuscular motor innervation. Our observations indicate a role for collagen XXV in regulating the appropriate innervation not only of extraocular muscles, but also of bulbar, axial, and limb muscles in the human.


Asunto(s)
Artrogriposis , Artrogriposis/diagnóstico , Artrogriposis/genética , Cara , Humanos , Músculo Esquelético , Mutación , Fenotipo
7.
Hum Genet ; 140(12): 1709-1731, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34652576

RESUMEN

Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.


Asunto(s)
Parálisis Facial/genética , Fibrosis/genética , Mutación , Oftalmoplejía/genética , Enfermedades del Sistema Nervioso Periférico/genética , Tubulina (Proteína)/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Sustitución de Aminoácidos , Arginina , Niño , Preescolar , Parálisis Facial/diagnóstico , Parálisis Facial/fisiopatología , Femenino , Fibrosis/diagnóstico , Fibrosis/fisiopatología , Histidina , Humanos , Lactante , Masculino , Oftalmoplejía/diagnóstico , Oftalmoplejía/fisiopatología , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Síndrome , Adulto Joven
9.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806565

RESUMEN

Congenital fibrosis of the extraocular muscles (CFEOM) is a congenital cranial dysinnervation disorder caused by developmental abnormalities affecting cranial nerves/nuclei innervating the extraocular muscles. Autosomal dominant CFEOM arises from heterozygous missense mutations of KIF21A or TUBB3. Although spatiotemporal expression studies have shown KIF21A and TUBB3 expression in developing retinal ganglion cells, it is unclear whether dysinnervation extends beyond the oculomotor system. We aimed to investigate whether dysinnervation extends to the visual system by performing high-resolution optical coherence tomography (OCT) scans characterizing retinal ganglion cells within the optic nerve head and retina. Sixteen patients with CFEOM were screened for mutations in KIF21A, TUBB3, and TUBB2B. Six patients had apparent optic nerve hypoplasia. OCT showed neuro-retinal rim loss. Disc diameter, rim width, rim area, and peripapillary nerve fiber layer thickness were significantly reduced in CFEOM patients compared to controls (p < 0.005). Situs inversus of retinal vessels was seen in five patients. Our study provides evidence of structural optic nerve and retinal changes in CFEOM. We show for the first time that there are widespread retinal changes beyond the retinal ganglion cells in patients with CFEOM. This study shows that the phenotype in CFEOM extends beyond the motor nerves.


Asunto(s)
Fibrosis/patología , Músculos Oculomotores/patología , Oftalmoplejía/patología , Nervio Óptico/patología , Retina/patología , Adulto , Nervios Craneales/patología , Femenino , Fibrosis/genética , Humanos , Masculino , Mutación Missense/genética , Oftalmoplejía/genética , Disco Óptico/patología , Fenotipo , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica/métodos , Adulto Joven
10.
Eur J Hum Genet ; 29(5): 816-826, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33649541

RESUMEN

Variants in multiple tubulin genes have been implicated in neurodevelopmental disorders, including malformations of cortical development (MCD) and congenital fibrosis of the extraocular muscles (CFEOM). Distinct missense variants in the beta-tubulin encoding genes TUBB3 and TUBB2B cause MCD, CFEOM, or both, suggesting substitution-specific mechanisms. Variants in the alpha tubulin-encoding gene TUBA1A have been associated with MCD, but not with CFEOM. Using exome sequencing (ES) and genome sequencing (GS), we identified 3 unrelated probands with CFEOM who harbored novel heterozygous TUBA1A missense variants c.1216C>G, p.(His406Asp); c.467G>A, p.(Arg156His); and c.1193T>G, p.(Met398Arg). MRI revealed small oculomotor-innervated muscles and asymmetrical caudate heads and lateral ventricles with or without corpus callosal thinning. Two of the three probands had MCD. Mutated amino acid residues localize either to the longitudinal interface at which α and ß tubulins heterodimerize (Met398, His406) or to the lateral interface at which tubulin protofilaments interact (Arg156), and His406 interacts with the motor domain of kinesin-1. This series of individuals supports TUBA1A variants as a cause of CFEOM and expands our knowledge of tubulinopathies.


Asunto(s)
Fibrosis/genética , Malformaciones del Desarrollo Cortical/genética , Oftalmoplejía/genética , Tubulina (Proteína)/genética , Adolescente , Sitios de Unión , Niño , Femenino , Fibrosis/patología , Heterocigoto , Humanos , Cinesinas/metabolismo , Masculino , Malformaciones del Desarrollo Cortical/patología , Mutación Missense , Oftalmoplejía/patología , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
11.
Ophthalmic Genet ; 42(2): 195-199, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33251926

RESUMEN

Background: Congenital fibrosis of the extraocular muscles (CFEOM) is characterized by ptosis and non-progressive restrictive ophthalmoplegia. CFEOM1 is a stereotypical phenotype with isolated bilateral ptosis, bilateral ophthalmoplegia, absent upgaze, and globe infraduction. CFEOM3 is a more variable phenotype that can include unilateral disease, absent ptosis, residual upgaze, and/or orthotropia. Most cases of CFEOM1 result from recurrent heterozygous KIF21A missense mutations and less commonly from recurrent heterozygous TUBB3 missense mutations. While most cases of CFEOM3 result from recurrent heterozygous TUBB3 missense mutations, several pedigrees harbored pathogenic variants in KIF21A. Here, we asked if Lebanese pedigrees with CFEOM3 harbor pathogenic variants in TUBB3 or KIF21A.Materials and Methods: Families affected with congenital cranial dysinnervation disorders were prospectively recruited from the American University of Beirut pediatric ophthalmology clinic and included two probands with CFEOM. KIF21A hotspot exons and TUBB3 coding sequence were sequenced. Available family members were sequenced for co-segregation analysis.Results: Both families were found to have CFEOM3 and to harbor pathogenic variants in KIF21A(OMIM 608283). A simplex proband with CFEOM3 from a consanguineous Iraqi family harbored a de novo heterozygous KIF21A c.2860 C > T variant (p.R954W); this variant accounts for the majority of reported KIF21A mutations but is typically implicated in CFEOM1. A Lebanese father with CFEOM3 and his son with CFEOM1 segregated a heterozygous KIF21A c.2830 G > C variant (p.E944Q), previously reported in an individual with CFEOM1.Conclusions: These results support prior reports of KIF21A mutations as a rare cause of CFEOM3. These families are Middle Eastern or Chinese, supporting a genetic modifier in these populations.


Asunto(s)
Fibrosis/patología , Cinesinas/genética , Mutación , Oftalmoplejía/patología , Fenotipo , Niño , Preescolar , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Heterocigoto , Humanos , Masculino , Oftalmoplejía/etiología , Oftalmoplejía/metabolismo , Linaje
12.
Invest Ophthalmol Vis Sci ; 61(10): 22, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32780866

RESUMEN

Purpose: To determine whether rare copy number variants (CNVs) increase risk for comitant esotropia. Methods: CNVs were identified in 1614 Caucasian individuals with comitant esotropia and 3922 Caucasian controls from Illumina SNP genotyping using two Hidden Markov model (HMM) algorithms, PennCNV and QuantiSNP, which call CNVs based on logR ratio and B allele frequency. Deletions and duplications greater than 10 kb were included. Common CNVs were excluded. Association testing was performed with 1 million permutations in PLINK. Significant CNVs were confirmed with digital droplet polymerase chain reaction (ddPCR). Whole genome sequencing was performed to determine insertion location and breakpoints. Results: Esotropia patients have similar rates and proportions of CNVs compared with controls but greater total length and average size of both deletions and duplications. Three recurrent rare duplications significantly (P = 1 × 10-6) increase the risk of esotropia: chromosome 2p11.2 (hg19, 2:87428677-87965359), spanning one long noncoding RNA (lncRNA) and two microRNAs (OR 14.16; 95% confidence interval [CI] 5.4-38.1); chromosome 4p15.2 (hg19, 4:25554332-25577184), spanning one lncRNA (OR 11.1; 95% CI 4.6-25.2); chromosome 10q11.22 (hg19, 10:47049547-47703870) spanning seven protein-coding genes, one lncRNA, and four pseudogenes (OR 8.96; 95% CI 5.4-14.9). Overall, 114 cases (7%) and only 28 controls (0.7%) had one of the three rare duplications. No case nor control had more than one of these three duplications. Conclusions: Rare CNVs are a source of genetic variation that contribute to the genetic risk for comitant esotropia, which is likely polygenic. Future research into the functional consequences of these recurrent duplications may shed light on the pathophysiology of esotropia.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Esotropía/genética , Predisposición Genética a la Enfermedad/genética , Estudios de Casos y Controles , Femenino , Duplicación de Gen/genética , Frecuencia de los Genes/genética , Técnicas de Genotipaje , Humanos , Lactante , Masculino , Cadenas de Markov , Reacción en Cadena de la Polimerasa , Factores de Riesgo
13.
Br J Ophthalmol ; 104(4): 547-550, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31302631

RESUMEN

BACKGROUND: The genetic basis of monocular elevation deficiency (MED) is unclear. It has previously been considered to arise due to a supranuclear abnormality. METHODS: Two brothers with MED were referred to Leicester Royal Infirmary, UK from the local opticians. Their father had bilateral ptosis and was unable to elevate both eyes, consistent with the diagnosis of congenital fibrosis of extraocular muscles (CFEOM). Candidate sequencing was performed in all family members. RESULTS: Both affected siblings (aged 7 and 12 years) were unable to elevate the right eye. Their father had bilateral ptosis, left esotropia and bilateral limitation of elevation. Chin up head posture was present in the older sibling and the father. Bell's phenomenon and vertical rotational vestibulo-ocular reflex were absent in the right eye for both children. Mild bilateral facial nerve palsy was present in the older sibling and the father. Both siblings had slight difficulty with tandem gait. MRI revealed hypoplastic oculomotor nerve. Left anterior insular focal cortical dysplasia was seen in the older sibling. Sequencing of TUBB3 revealed a novel heterozygous variant (c.1263G>C, p.E421D) segregating with the phenotype. This residue is in the C-terminal H12 α-helix of ß-tubulin and is one of three putative kinesin binding sites. CONCLUSION: We show that familial MED can arise from a TUBB3 variant and could be considered a limited form of CFEOM. Neurological features such as mild facial palsy and cortical malformations can be present in patients with MED. Thus, in individuals with congenital MED, consideration may be made for TUBB3 mutation screening.


Asunto(s)
Fibrosis/genética , Mutación/genética , Trastornos de la Motilidad Ocular/genética , Oftalmoplejía/genética , Tubulina (Proteína)/genética , Adulto , Corteza Cerebral/diagnóstico por imagen , Niño , Análisis Mutacional de ADN , Fibrosis/diagnóstico , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Motilidad Ocular/diagnóstico , Oftalmoplejía/diagnóstico , Linaje , Hermanos
14.
Singapore Med J ; 61(4): 194-199, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31788703

RESUMEN

INTRODUCTION: Psoriasis is a chronic inflammatory condition that affects the skin and joints, and is associated with cardiovascular risk factors, including metabolic syndrome (MetS). We aimed to assess the prevalence of MetS in patients with psoriasis and determine whether there was a correlation between psoriasis severity and MetS in a Singapore population. METHODS: This was a cross-sectional study of patients with psoriasis, aged 18-69 years, who attended a tertiary dermatology referral centre in Singapore from October 2007 to February 2009. Fasting glucose, lipids, blood pressure, Psoriasis Area and Severity Index, and body mass index were measured. MetS was diagnosed in the presence of three or more criteria of the modified National Cholesterol Education Program Adult Treatment Panel III. RESULTS: Among 338 patients with psoriasis, there were 238 (70.4%) men and 100 (29.6%) women, who were Chinese (n = 228; 67.5%), Malay (n = 52; 15.4%) and Indian (n = 58; 17.2%). The prevalence of MetS was 45.1%. MetS was 44% more prevalent in patients older than 50 years (p = 0.02). Malay patients with psoriasis were significantly more likely to have hypertriglyceridaemia, elevated fasting plasma glucose and abdominal obesity. There was no significant correlation between psoriasis severity and risk of MetS. CONCLUSION: The prevalence of MetS in patients with psoriasis in Singapore was 45.1%, or nearly threefold higher than the Singapore general population. Patients with psoriasis should be screened yearly for MetS and any modifiable cardiovascular risk factors should be actively controlled.


Asunto(s)
Síndrome Metabólico/complicaciones , Síndrome Metabólico/epidemiología , Psoriasis/complicaciones , Adolescente , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Psoriasis/epidemiología , Factores de Riesgo , Distribución por Sexo , Singapur/epidemiología , Adulto Joven
15.
Res Synth Methods ; 11(1): 123-133, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31682084

RESUMEN

Pathway-based differential expression analysis allows the incorporation of biological domain knowledge into transcriptomics analysis to enhance our understanding of disease mechanisms. To integrate information among multiple studies at the pathway level, pathway-based meta-analysis can be performed. Paired or partially paired samples are common in biomedical research. However, there are currently no existing pathway-based meta-analysis methods appropriate for paired or partially paired study designs. In this study, we developed a pathway-based meta-analysis approach for paired or partially paired samples. Meta-analysis on the transcriptomics profiles were conducted using p-value-based, rank-based, and effect size-based algorithms. The application of our approach was demonstrated using partially paired data from psoriasis transcriptomics studies. Upon combining six transcriptomics studies, genes related to the cell cycle and DNA replication pathways are found to be highly perturbed in psoriatic lesional skin samples. Results were validated externally with independent RNA-Seq data. Comparison with existing pathway meta-analysis methods revealed consistent results, with our method showing higher detection power. This study demonstrated the utility of our newly developed pathway-based meta-analysis that allows the incorporation of partially paired or paired samples. The proposed framework can be applied to omics data including but not limited to transcriptomics data.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica , Metaanálisis como Asunto , Transcriptoma , Algoritmos , Regulación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Psoriasis/metabolismo , RNA-Seq , Proyectos de Investigación , Piel/metabolismo , Enfermedades de la Piel/metabolismo , Programas Informáticos
16.
Hum Mol Genet ; 28(18): 3113-3125, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31211835

RESUMEN

Oculomotor synkinesis is the involuntary movement of the eyes or eyelids with a voluntary attempt at a different movement. The chemokine receptor CXCR4 and its ligand CXCL12 regulate oculomotor nerve development; mice with loss of either molecule have oculomotor synkinesis. In a consanguineous family with congenital ptosis and elevation of the ptotic eyelid with ipsilateral abduction, we identified a co-segregating homozygous missense variant (c.772G>A) in ACKR3, which encodes an atypical chemokine receptor that binds CXCL12 and functions as a scavenger receptor, regulating levels of CXCL12 available for CXCR4 signaling. The mutant protein (p.V258M) is expressed and traffics to the cell surface but has a lower binding affinity for CXCL12. Mice with loss of Ackr3 have variable phenotypes that include misrouting of the oculomotor and abducens nerves. All embryos show oculomotor nerve misrouting, ranging from complete misprojection in the midbrain, to aberrant peripheral branching, to a thin nerve, which aberrantly innervates the lateral rectus (as seen in Duane syndrome). The abducens nerve phenotype ranges from complete absence, to aberrant projections within the orbit, to a normal trajectory. Loss of ACKR3 in the midbrain leads to downregulation of CXCR4 protein, consistent with reports that excess CXCL12 causes ligand-induced degradation of CXCR4. Correspondingly, excess CXCL12 applied to ex vivo oculomotor slices causes axon misrouting, similar to inhibition of CXCR4. Thus, ACKR3, through its regulation of CXCL12 levels, is an important regulator of axon guidance in the oculomotor system; complete loss causes oculomotor synkinesis in mice, while reduced function causes oculomotor synkinesis in humans.


Asunto(s)
Actividad Motora/genética , Desempeño Psicomotor , Receptores CXCR/genética , Receptores CXCR/metabolismo , Sincinesia/etiología , Sincinesia/metabolismo , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Biomarcadores , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Estudios de Asociación Genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Inmunohistoquímica , Ratones , Mutación , Linaje , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Receptores CXCR/química , Sincinesia/diagnóstico , Sincinesia/fisiopatología
17.
Cereb Cortex ; 29(8): 3561-3576, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-30272120

RESUMEN

Seven unrelated individuals (four pediatric, three adults) with the TUBB3 E410K syndrome, harboring identical de novo heterozygous TUBB3 c.1228 G>A mutations, underwent neuropsychological testing and neuroimaging. Despite the absence of cortical malformations, they have intellectual and social disabilities. To search for potential etiologies for these deficits, we compared their brain's structural and white matter organization to 22 controls using structural and diffusion magnetic resonance imaging. Diffusion images were processed to calculate fractional anisotropy (FA) and perform tract reconstructions. Cortical parcellation-based network analysis and gyral topology-based FA analyses were performed. Major interhemispheric, projection and intrahemispheric tracts were manually segmented. Subjects had decreased corpus callosum volume and decreased network efficiency. While only pediatric subjects had diffuse decreases in FA predominantly affecting mid- and long-range tracts, only adult subjects had white matter volume loss associated with decreased cortical surface area. All subjects showed aberrant corticospinal tract trajectory and bilateral absence of the dorsal language network long segment. Furthermore, pediatric subjects had more tracts with decreased FA compared with controls than did adult subjects. These findings define a TUBB3 E410K neuroimaging endophenotype and lead to the hypothesis that the age-related changes are due to microscopic intrahemispheric misguided axons that are pruned during maturation.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Cuerpo Calloso/diagnóstico por imagen , Discapacidad Intelectual/diagnóstico por imagen , Tractos Piramidales/diagnóstico por imagen , Tubulina (Proteína)/genética , Sustancia Blanca/diagnóstico por imagen , Adulto , Factores de Edad , Anisotropía , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Casos y Controles , Corteza Cerebral/patología , Niño , Cuerpo Calloso/patología , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Endofenotipos , Femenino , Fibrosis/diagnóstico por imagen , Fibrosis/genética , Fibrosis/patología , Fibrosis/fisiopatología , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Síndrome de Kallmann/diagnóstico por imagen , Síndrome de Kallmann/genética , Síndrome de Kallmann/patología , Síndrome de Kallmann/fisiopatología , Masculino , Mutación , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Pruebas Neuropsicológicas , Oftalmoplejía/diagnóstico por imagen , Oftalmoplejía/genética , Oftalmoplejía/patología , Oftalmoplejía/fisiopatología , Tamaño de los Órganos , Tractos Piramidales/patología , Síndrome , Sustancia Blanca/patología , Adulto Joven
18.
Invest Ophthalmol Vis Sci ; 59(10): 4054-4064, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098192

RESUMEN

Purpose: To identify genetic variants conferring susceptibility to esotropia. Esotropia is the most common form of comitant strabismus, has its highest incidence in European ancestry populations, and is believed to be inherited as a complex trait. Methods: White European American discovery cohorts with nonaccommodative (826 cases and 2991 controls) or accommodative (224 cases and 749 controls) esotropia were investigated. White European Australian and United Kingdom cohorts with nonaccommodative (689 cases and 1448 controls) or accommodative (66 cases and 264 controls) esotropia were tested for replication. We performed a genome-wide case-control association study using a mixed linear additive model. Meta-analyses of discovery and replication cohorts were then conducted. Results: A significant association with nonaccommodative esotropia was discovered (odds ratio [OR] = 1.41, P = 2.84 × 10-09) and replicated (OR = 1.23, P = 0.01) at rs2244352 [T] located within intron 1 of the WRB (tryptophan rich basic protein) gene on chromosome 21 (meta-analysis OR = 1.33, P = 9.58 × 10-11). This single nucleotide polymorphism (SNP) is differentially methylated, and there is a statistically significant skew toward paternal inheritance in the discovery cohort. Meta-analysis of the accommodative discovery and replication cohorts identified an association with rs912759 [T] (OR = 0.59, P = 1.89 × 10-08), an intergenic SNP on chromosome 1p31.1. Conclusions: This is the first genome-wide association study (GWAS) to identify significant associations in esotropia and suggests a parent-of-origin effect. Additional cohorts will permit replication and extension of these findings. Future studies of rs2244352 and WRB should provide insight into pathophysiological mechanisms underlying comitant strabismus.


Asunto(s)
Esotropía/genética , Predisposición Genética a la Enfermedad/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple , Acomodación Ocular/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Esotropía/fisiopatología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Población Blanca/genética , Adulto Joven
19.
Am J Hum Genet ; 103(1): 115-124, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29887215

RESUMEN

MYF5 is member of the Myc-like basic helix-loop-helix transcription factor family and, in cooperation with other myogenic regulatory factors MYOD and MYF5, is a key regulator of early stages of myogenesis. Here, we report three consanguineous families with biallelic homozygous loss-of-function mutations in MYF5 who define a clinical disorder characterized by congenital ophthalmoplegia with scoliosis and vertebral and rib anomalies. The clinical phenotype overlaps strikingly with that reported in several Myf5 knockout mouse models. Affected members of two families share a haploidentical region that contains a homozygous 10 bp frameshift mutation in exon 1 of MYF5 (c.23_32delAGTTCTCACC [p.Gln8Leufs∗86]) predicted to undergo nonsense-mediated decay. Affected members of the third family harbor a homozygous missense change in exon 1 of MYF5 (c.283C>T [p.Arg95Cys]). Using in vitro assays, we show that this missense mutation acts as a loss-of-function allele by impairing MYF5 DNA binding and nuclear localization. We performed whole-genome sequencing in one affected individual with the frameshift mutation and did not identify additional rare variants in the haploidentical region that might account for differences in severity among the families. These data support the direct role of MYF5 in rib, spine, and extraocular muscle formation in humans.


Asunto(s)
Mutación/genética , Factor 5 Regulador Miogénico/genética , Oftalmoplejía/genética , Costillas/anomalías , Columna Vertebral/anomalías , Alelos , Secuencia de Aminoácidos , Canal Anal/anomalías , Animales , Proteínas de Unión al ADN/genética , Esófago/anomalías , Exones/genética , Femenino , Cardiopatías Congénitas , Humanos , Riñón/anomalías , Deformidades Congénitas de las Extremidades , Masculino , Ratones Noqueados , Proteína MioD/genética , Fenotipo , Alineación de Secuencia , Tráquea/anomalías , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...